PT-symmetric extension of the Korteweg-de Vries equation

被引:53
作者
Bender, Carl M. [1 ]
Brody, Dorje C.
Chen, Jun-Hua
Furlan, Elisabetta
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
关键词
D O I
10.1088/1751-8113/40/5/F02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Korteweg-de Vries equation u(t) + uu(x) + u(xxx) = 0 is PT symmetric (invariant under spacetime reflection). Therefore, it can be generalized and extended into the complex domain in such a way as to preserve the PT symmetry. The result is the family of complex nonlinear wave equations u(t) - iu(iu(x))(epsilon) + u(xxx) = 0, where epsilon is real. The features of these equations are discussed. Special attention is given to the epsilon = 3 equation, for which conservation laws are derived and solitary waves are investigated.
引用
收藏
页码:F153 / F160
页数:8
相关论文
共 15 条
[1]  
ABRAMOWITZ M, 1965, HDB MATH FUNCTIONS, P446
[2]   Classical trajectories for complex Hamiltonians [J].
Bender, Carl M. ;
Chen, Jun-Hua ;
Darg, Daniel W. ;
Milton, Kimball A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (16) :4219-4238
[3]  
BENDER CJ, UNPUB
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[6]  
BENDER CM, 2006, MATHPH0609068
[7]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[8]   Supersymmetry and the spontaneous breakdown of PT symmetry [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :L391-L400
[9]   Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :5679-5704
[10]  
FUSHCHYCH WI, 1991, REP UKR ACAD SCI, V12, P28