CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR

被引:225
作者
Di Francesco, Marco [1 ]
Lorz, Alexander [2 ]
Markowich, Peter A. [2 ]
机构
[1] Dept Pure & Appl Math, I-67100 Laquila, Italy
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
关键词
chemotaxis model; nonlinear diffusion; Stokes equations; KELLER-SEGEL MODEL; PREVENTING BLOW-UP; AGGREGATION; R-2;
D O I
10.3934/dcds.2010.28.1437
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the system {c(t) + u center dot del c = Delta c - nf(c) n(t) + u center dot del n = Delta n(m) - del center dot (n chi(c)del c) u(t) + u center dot del u + del P - eta Delta u + n del phi = 0 del center dot u = 0 arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through an incompressible fluid. The novelty with respect to previous papers in the literature lies in the presence of nonlinear porous-medium-like diffusion in the equation for the density n of the bacteria, motivated by a finite size effect. We prove that, under the constraint m is an element of (3/2,2] for the adiabatic exponent, such system features global in time solutions in two space dimensions for large data. Moreover, in the case m = 2 we prove that solutions converge to constant states in the large-time limit. The proofs rely on standard energy methods and on a basic entropy estimate which cannot be achieved in the case m = 1. The case m = 2 is very special as we can provide a Lyapounov functional. We generalize our results to the three-dimensional case and obtain a smaller range of exponents m is an element of (m*, 2} with m* > 3/2, due to the use of classical Sobolev inequalities.
引用
收藏
页码:1437 / 1453
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 1998, Japan J. Indust. Appl. Math., V15, P51
[2]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[3]  
[Anonymous], 2007, POROUS MEDIUM EQUATI
[4]  
Blanchet A., 2006, Electron. Differential Equations, V2006, P1
[5]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[6]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[7]   A new interpretation of the Keller-Segel model based on multiphase modelling [J].
Byrne, HM ;
Owen, MR .
JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 49 (06) :604-626
[8]   DYNAMIC THEORY OF SUSPENSIONS WITH BROWNIAN EFFECTS [J].
CAFLISCH, R ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :885-906
[9]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417
[10]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175