Mechanisms of PrOx performance enhancement of oxygen electrodes for low and intermediate temperature solid oxide fuel cells

被引:48
作者
Lu, Matthew Y. [1 ]
Scipioni, Roberto [1 ]
Park, Beom-Kyeong [1 ]
Yang, Tianrang [1 ]
Chart, Yvonne A. [1 ]
Barnett, Scott A. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Solid oxide cells; LSCF; STFC; Praseodymium oxide; Infiltration; Fuel cells; OPERATING-CONDITIONS; SURFACE EXCHANGE; NEXT-GENERATION; SR SEGREGATION; THIN-FILMS; IMPEDANCE; REDUCTION; CATHODE; MODEL; CONDUCTIVITY;
D O I
10.1016/j.mtener.2019.100362
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent developments in solid oxide cells focus on decreasing operating temperatures below 600 degrees C for improved cost and electrochemical stability in order to improve viability for commercialization. In this work, we improve the performance and stability of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and a recently developed electrode material, SrTi0.3Fe0.55Co0.15O3-delta (STFC), with addition of PrOx nanoparticles. Single-step PrOx infiltration improves performance of both LSCF and STFC across all tested temperatures (450-650 degrees C) with the most significant enhancements at lower temperatures. STFC modified with PrOx yields the best overall performance and stability, with the initial polarization resistance of 0.20 Omega cm(2) at 550 degrees C increasing over similar to 800 h before stabilizing at 0.27 Omega cm(2). This represents a factor of similar to 10 resistance decrease compared to the LSCF electrode at 550 degrees C. A distribution of relaxation times analysis sheds light on the electrochemical mechanisms impacted by PrOx. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 70 条
  • [1] Factors governing oxygen reduction in solid oxide fuel cell cathodes
    Adler, SB
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4791 - 4843
  • [2] [Anonymous], J MAT CHEM A
  • [3] [Anonymous], INT J HYDROG ENERGY
  • [4] The role of rare earth prices in renewable energy consumption: The actual driver for a renewable energy world
    Apergis, Emmanuel
    Apergis, Nicholas
    [J]. ENERGY ECONOMICS, 2017, 62 : 33 - 42
  • [5] Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3-δSOFC cathodes by electrochemical activation
    Baumann, FS
    Fleig, J
    Konuma, M
    Starke, U
    Habermeier, HU
    Maier, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) : A2074 - A2079
  • [6] Prospects of different fuel cell technologies for vehicle applications
    Bernay, C
    Marchand, M
    Cassir, M
    [J]. JOURNAL OF POWER SOURCES, 2002, 108 (1-2) : 139 - 152
  • [7] High efficiency electrical energy storage using a methane-oxygen solid oxide cell
    Bierschenk, David M.
    Wilson, James R.
    Barnett, Scott A.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) : 944 - 951
  • [8] Chemical Heterogeneities on La0.6Sr0.4CoO3-δ Thin Films-Correlations to Cathode Surface Activity and Stability
    Cai, Zhuhua
    Kubicek, Markus
    Fleig, Juergen
    Yildiz, Bilge
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (06) : 1116 - 1127
  • [9] Degradation of nano-scale cathodes: a new paradigm for selecting low-temperature solid oxide cell materials
    Call, Ann V.
    Railsback, Justin G.
    Wang, Hongqian
    Barnett, Scott A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (19) : 13216 - 13222
  • [10] Preparation of Mesoporous La0.8Sr0.2MnO3 Infiltrated Coatings in Porous SOFC Cathodes Using Evaporation-Induced Self-Assembly Methods
    Chao, R.
    Kitchin, J. R.
    Gerdes, K.
    Sabolsky, E. M.
    Salvador, P. A.
    [J]. SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2387 - 2399