Classical stochastic discrete time crystals

被引:37
作者
Gambetta, F. M. [1 ,2 ]
Carollo, F. [1 ,2 ]
Lazarides, A. [3 ,4 ]
Lesanovsky, I [1 ,2 ,5 ]
Garrahan, J. P. [1 ,2 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Nottingham NG7 2RD, England
[3] Loughborough Univ, Interdisciplinary Ctr Math Modelling, Loughborough LE11 3TU, Leics, England
[4] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[5] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
D O I
10.1103/PhysRevE.100.060105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe a general and simple paradigm for discrete time crystals (DTCs), systems with a stable subharmonic response to an external driving field, in a classical thermal setting. We consider, specifically, an Ising model in two dimensions, as a prototypical system with a phase transition into stable phases distinguished by a local order parameter, driven by thermal dynamics and periodically kicked with a noisy protocol. By means of extensive numerical simulations for large sizes-allowed by the classical nature of our model-we show that the system features a true disorder-DTC order phase transition as a function of the noise strength, with a robust DTC phase extending over a wide parameter range. We demonstrate that, when the dynamics is observed stroboscopically, the phase transition to the DTC state appears to be in the equilibrium two-dimensional Ising universality class. However, we explicitly show that the DTC is a genuine nonequilibrium state. More generally, we speculate that systems with thermal phase transitions to multiple competing phases can give rise to DTCs when appropriately driven.
引用
收藏
页数:6
相关论文
共 77 条
  • [1] [Anonymous], ARXIV180709884
  • [2] Realizing time crystals in discrete quantum few-body systems
    Barfknecht, R. E.
    Rasmussen, S. E.
    Foerster, A.
    Zinner, N. T.
    [J]. PHYSICAL REVIEW B, 2019, 99 (14)
  • [3] Persistent Coherent Beating in Coupled Parametric Oscillators
    Bello, Leon
    Strinati, Marcello Calvanese
    Dalla Torre, Emanuele G.
    Pe'er, Avi
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (08)
  • [4] Binder K, 2010, GRAD TEXTS PHYS, P1, DOI 10.1007/978-3-642-03163-2
  • [5] NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS
    BORTZ, AB
    KALOS, MH
    LEBOWITZ, JL
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) : 10 - 18
  • [6] Impossibility of Spontaneously Rotating Time Crystals: A No-Go Theorem
    Bruno, Patrick
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (07)
  • [7] Non-stationary coherent quantum many-body dynamics through dissipation
    Buca, Berislav
    Tindall, Joseph
    Jaksch, Dieter
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [8] Three-dimensional classical and quantum stable structures of dissipative systems
    Carlo, Gabriel G.
    Ermann, Leonardo
    Rivas, Alejandro M. F.
    Spina, Maria E.
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [9] Chaikin P. M., 1995, PRINCIPLES CONDENSED
  • [10] Dynamic transitions and hysteresis
    Chakrabarti, BK
    Acharyya, M
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (03) : 847 - 859