Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods

被引:81
|
作者
Qi, Yae [1 ,2 ]
Huang, Jianhang [1 ,3 ]
Yan, Lei [1 ]
Cao, Yongjie [1 ]
Xu, Jie [1 ]
Bin, Duan [4 ]
Liao, Mochou [1 ]
Xia, Yongyao [1 ]
机构
[1] Fudan Univ, Inst New Energy, iChEM Collaborat Innovat Ctr Chem Energy Mat, Dept Chem,Shanghai Key Lab Mol Catalysis & Innovat, Shanghai 200433, Peoples R China
[2] Hexi Univ, Coll Chem & Chem Engn, Key Lab Hexi Corridor Resources Utilizat Gansu, Zhangye 734000, Peoples R China
[3] Zhejiang Normal Univ, Coll Chem & Life Sci, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
[4] Nantong Univ, Coll Chem & Chem Engn, Dept Polymer Mat & Sci, Nantong 226000, Peoples R China
关键词
Aqueous zinc-ion battery; Cesium; Vanadium oxide; Intercalation; CATHODE MATERIAL; HIGH-CAPACITY; RECENT PROGRESS; HIGH-ENERGY; STATE; LIFE;
D O I
10.1016/j.cej.2022.136349
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Layered vanadium oxide cathode materials have attracted extensive attentions in rechargeable aqueous zinc-ion batteries (ZIBs) owing to its large interlayer distance and high capacity. Unfortunately, it suffers from fast capacity decay during long-term cycle due to severe structural collapse. Herein, we intercalate cesium ion (Cs+) into hydrated vanadium pentoxide (V2O5 center dot nH(2)O) to obtain a reinforce layered structure, which forms strong Cs-O bond with the built-in oxygen atom and enhances the interaction between the layers to avoid the structure collapse. As a result, the Cs+ intercalated material (CsVO) presents an enhanced specific capacity (404.9 mAh g(-1) at current density of 0.1 A g(-1), 189.9 mAh g(-1) at 20 A g(-1)) and excellent long-term cycle stability (the capacity retention of 89% over 10,000 cycles even at 20 A g(-1)), that is obviously superior to the bare V2O5 center dot & nbsp;nH(2)O electrode. Furthermore, Zn2+/H+ co-insertion mechanism in aqueous ZIBs is demonstrated by ex-situ XRD and XPS characterizations.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Carbon-Integrated Vanadium Oxide Hydrate as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    Golberg, Dmitri, V
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4159 - 4169
  • [42] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    JOURNAL OF POWER SOURCES, 2024, 595
  • [43] Reversible K0.54V2O5 Nanorods for High-Performance Aqueous Zinc-Ion Batteries
    Wu, Pengbo
    Xu, Tianxing
    Chen, Yaopeng
    Yang, Qiaoling
    Wang, Jue
    Liu, You-Nian
    Li, Yajuan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1656 - 1661
  • [44] Polyaniline-Intercalated Vanadium Dioxide Nanoflakes for High-Performance Aqueous Zinc Ion Batteries
    Yuan, Xin
    Nie, Yanguang
    Zou, Tong
    Deng, Chuanlei
    Zhang, Youpeng
    Wang, Zanyao
    Wang, Jicheng
    Zhang, Chengliang
    Ye, Enjia
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 13692 - 13701
  • [45] Interlayer-modified pseudocapacitive ammonium vanadium with high reversibility and stability enabling high-performance aqueous zinc-ion battery
    Zhang, Xi
    Sun, Xiaohong
    Zheng, Chunming
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [46] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [47] Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries
    Hu, Kang
    Jin, Danqing
    Zhang, Yao
    Ke, Longwei
    Shang, Huan
    Yan, Yan
    Lin, Huijuan
    Rui, Kun
    Zhu, Jixin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 61 : 594 - 601
  • [48] Tuning lamellar structure of vanadium oxide via inorganic-organic hybridization engineering for high-performance aqueous zinc-ion storage
    Shen, Yue
    Zhi, Xiaodong
    Zhang, Ruiying
    Jin, Jiuzeng
    Wang, Yu
    Feng, Zhongmin
    Sun, Ting
    JOURNAL OF POWER SOURCES, 2025, 641
  • [49] Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries
    Li, Yan
    Zhang, Daohong
    Huang, Shaozhuan
    Yang, Hui Ying
    NANO ENERGY, 2021, 85
  • [50] Anion and Cation Co-Modified Vanadium Oxide for Cathode Material of Aqueous Zinc-Ion Battery
    Zhang, Xueqi
    Bian, Ruilin
    Sang, Zhiyuan
    Tan, Shandong
    Liang, Ji
    Wang, Liqun
    Hou, Feng
    BATTERIES-BASEL, 2023, 9 (07):