Comparison of Heat Recovery Ventilator Frost Control Techniques in the Canadian Arctic: Preheat and Recirculation

被引:3
作者
Berquist, Justin [1 ]
Banister, Carsen [1 ]
Pellissier, Mathieu [1 ]
机构
[1] Natl Res Council Canada, 1200 Montreal Rd, Montreal, ON, Canada
来源
COLD CLIMATE HVAC & ENERGY 2021 | 2021年 / 246卷
关键词
EXCHANGERS;
D O I
10.1051/e3sconf/202124611010
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Air-to-air heat/energy recovery ventilators can effectively reduce the cost associated with ventilating a home. However, high indoor moisture levels, in conjunction with extreme temperature differences between the outdoor and indoor air can cause frost accumulation in the mechanical equipment, leading to performance degradation or failure. In this research, a demonstration house using a heat recovery ventilation system in Iqaluit, Nunavut, Canada was used to compare the performance of two frost control techniques: recirculation and electrical preheat. The advantages and disadvantages of each method are outlined to highlight the need to adapt southern strategies to ensure system functionality in the Arctic. The system was equipped with a heat recovery ventilator (HRV) with built-in recirculation technology to defrost the HRV, as well as two electric preheaters that can be used instead of recirculation and prevent frost formation. Between December 2018 and April 2019 the ventilation system's performance was monitored for seven weeks while using either recirculation or electrical preheat. The experiments showed the ventilation system equipment consumed more absolute energy with electrical preheat than with recirculation as the frost control technique. However, when using recirculation, the ventilation system experienced more losses throughout the ventilation system, causing the whole building to consume more energy due to an increase in energy consumption by the home's heating system. Moreover, the quantity of outdoor air that was restricted while using recirculation made electrical preheat the superior option for this ventilation system design. The energy use of the ventilation system with electric preheat enabled was 35% lower on a per volume of outdoor air basis. Contrary to some belief that preheating is a poor approach for frost control in heat/energy recovery ventilators, this research finds that preheating can be a more energy efficient method to provide ventilation if controlled well.
引用
收藏
页数:8
相关论文
共 14 条
[1]  
Banister C., 2018, COLD CLIMATE HVAC
[2]  
Banister C., 2018, COLD CLIMATE HVACAC
[3]   Experimental study of air-to-air heat exchangers for use in arctic housing [J].
Beattie, Colin ;
Fazio, Paul ;
Zmeureanu, Radu ;
Rao, Jiwu .
APPLIED THERMAL ENGINEERING, 2018, 129 :1281-1291
[4]   Performance of an advanced heat recovery ventilation system in the Canadian Arctic [J].
Berquist, Justin ;
Banister, Carsen ;
Krys, Dennis .
INTERNATIONAL JOURNAL OF VENTILATION, 2021, 20 (3-4) :183-192
[5]   Investigation of a single room ventilation heat recovery exchanger under frosting conditions: Modeling, experimental validation and operating strategies evaluation [J].
Gendebien, Samuel ;
Parthoens, Antoine ;
Lemort, Vincent .
ENERGY AND BUILDINGS, 2019, 186 :1-16
[6]   A developed method for energy saving prediction of heat-and energy recovery units [J].
Kassai, Miklos .
EENVIRO-YRC 2015 - BUCHAREST, 2016, 85 :311-319
[7]   Heat recovery ventilators prevent respiratory disorders in Inuit children [J].
Kovesi, T. ;
Zaloum, C. ;
Stocco, C. ;
Fugler, D. ;
Dales, R. E. ;
Ni, A. ;
Barrowman, N. ;
Gilbert, N. L. ;
Miller, J. D. .
INDOOR AIR, 2009, 19 (06) :489-499
[8]  
Kragh J., 2005, 7 NORD S BUILD PHYS
[9]   Inuit housing and homelessness: results from the International Polar Year Inuit Health Survey 2007-2008 [J].
Minich, Katherine ;
Saudny, Helga ;
Lennie, Crystal ;
Wood, Michele ;
Williamson-Bathory, Laakkuluk ;
Cao, Zhirong ;
Egeland, Grace M. .
INTERNATIONAL JOURNAL OF CIRCUMPOLAR HEALTH, 2011, 70 (05) :520-531
[10]   Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation [J].
Nasr, Mohammad Rafati ;
Kassai, Miklos ;
Ge, Gaoming ;
Simonson, Carey J. .
APPLIED ENERGY, 2015, 151 :32-40