An overview of continuation methods for non-linear model predictive control of water systems

被引:6
|
作者
Baayen, Jorn [1 ]
Becker, Bernhard [2 ]
van Heeringen, Klaas-Jan [2 ]
Miltenburg, Ivo [2 ]
Piovesan, Teresa [2 ]
Rauw, Julia [1 ]
den Toom, Matthijs [2 ]
VanderWees, Jesse [1 ]
机构
[1] KISTERS Nederland BV, Piet Mondriaanpl 13-31, NL-3812 GZ Amersfoort, Netherlands
[2] Stichting Deltares, Boussinesqweg 1, NL-2629 HV Delft, Netherlands
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 23期
关键词
model predictive control; water systems; hydropower; pumps; open channel flow; homotopy; bifurcation; continuation methods; FINITE-DIFFERENCE METHODS; RESOURCES;
D O I
10.1016/j.ifacol.2019.11.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new class of optimization algorithms for nonlinear hydraulic models of water systems, the so-called continuation methods. Solution stability is singled out as an necessary condition for real-life deployment of nonlinear model predictive control of water systems. The paper discusses the stability of solutions produced by traditional approaches and presents improvements of the continuation method. The method has been implemented into the software package RTC-Tools. The application of the continuation method is illustrated with the help of a case study: an operational system for the drainage of a lowland region (polder) in the Western Netherlands. Copyright (C) 2019. The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 50 条
  • [21] A non-linear estimation and model predictive control algorithm based on ant colony optimization
    Nobahari, Hadi
    Nasrollahi, Saeed
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (04) : 1123 - 1138
  • [22] Non-linear model predictive control of throughput and strip temperature for continuous annealing line
    Wu, H.
    Speets, R.
    Heeremans, F.
    Ben Driss, O.
    van Buren, R.
    IRONMAKING & STEELMAKING, 2015, 42 (08) : 570 - 578
  • [23] Mixed-integer non-linear model predictive control of district heating networks
    Jansen, Jelger
    Jorissen, Filip
    Helsen, Lieve
    APPLIED ENERGY, 2024, 361
  • [24] Model predictive control for regular linear systems
    Dubljevic, Stevan
    Humaloja, Jukka-Pekka
    AUTOMATICA, 2020, 119
  • [25] Preconditioning for continuation model predictive control
    Knyazev, Andrew
    Malyshev, Alexander
    IFAC PAPERSONLINE, 2015, 48 (23): : 191 - 196
  • [26] Model Predictive Control for Linear Impulsive Systems
    Sopasakis, Pantelis
    Patrinos, Panagiotis
    Sarimveis, Haralambos
    Bemporad, Alberto
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (08) : 2277 - 2282
  • [27] Optimal EPO dosing in hemodialysis patients using a non-linear model predictive control approach
    S. Rogg
    D. H. Fuertinger
    S. Volkwein
    F. Kappel
    P. Kotanko
    Journal of Mathematical Biology, 2019, 79 : 2281 - 2313
  • [28] Optimal EPO dosing in hemodialysis patients using a non-linear model predictive control approach
    Rogg, S.
    Fuertinger, D. H.
    Volkwein, S.
    Kappel, F.
    Kotanko, P.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (6-7) : 2281 - 2313
  • [29] Non-linear model predictive control to improve transient production of a hot dip galvanising line
    Wu, H.
    Speets, R.
    Ozcan, G.
    Ekhart, R.
    Heijke, R.
    Nederlof, C.
    Boeder, C. J.
    IRONMAKING & STEELMAKING, 2016, 43 (07) : 541 - 549
  • [30] Model predictive control of a wave-to-wire wave energy converter system with non-linear dynamics and non-linear constraints using a tailored method
    Liao, Zhijing
    Li, Guang
    ENERGY, 2024, 304