Uncertainty propagation using polynomial chaos and centre manifold theories

被引:0
|
作者
Nechak, L. [1 ]
Berger, S. [1 ]
Aubry, E. [1 ]
机构
[1] Univ Haute Alsace, MIPS Lab, 12 Rue Freres Lumiere, F-68093 Mulhouse, France
来源
ISPRA '09: PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, ROBOTICS AND AUTOMATION | 2010年
关键词
Nonlinear Dynamic Systems; Model reduction; Centre Manifold; Uncertainty Quantification; Polynomial Chaos; Non-intrusive methods; Monte Carlo method; MODELING UNCERTAINTY; INSTABILITY; VIBRATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new methodology for uncertainty quantification in the field of nonlinear dynamic system analysis. It consists in combining both the centre manifold theory and the polynomial chaos approach. The first one is known to be a powerful tool for model reduction of nonlinear dynamic systems in Hopf bifurcation point neighbourhood while the polynomial chaos approach is an efficient tool for uncertainty propagation. Therefore, to couple the two methods can help to overcome computational difficulties due to both the complexity of nonlinear dynamic systems and the cost of the uncertainty propagation with the prohibitive Monte Carlo method. The feasibility and efficiency of the proposed methodology is investigated. So, a two degree of freedom model describing a drum brake system subject to uncertain initial conditions is considered.
引用
收藏
页码:46 / +
页数:2
相关论文
共 50 条
  • [1] Uncertainty propagation in CFD using polynomial chaos decomposition
    Knio, O. M.
    Le Maitre, O. P.
    FLUID DYNAMICS RESEARCH, 2006, 38 (09) : 616 - 640
  • [2] Dynamic system uncertainty propagation using polynomial chaos
    Xiong Fenfen
    Chen Shishi
    Xiong Ying
    Chinese Journal of Aeronautics , 2014, (05) : 1156 - 1170
  • [3] Dynamic system uncertainty propagation using polynomial chaos
    Xiong Fenfen
    Chen Shishi
    Xiong Ying
    CHINESE JOURNAL OF AERONAUTICS, 2014, 27 (05) : 1156 - 1170
  • [4] Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
    Schobi, Roland
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 339 : 307 - 327
  • [5] Propagation of Uncertainty in the MUSIC Algorithm Using Polynomial Chaos Expansions
    Van der Vorst, Thomas
    Van Eeckhaute, Mathieu
    Benlarbi-Delai, Aziz
    Sarrazin, Julien
    Horlin, Francois
    De Doncker, Philippe
    2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017, : 820 - 822
  • [6] Uncertainty propagation in puff-based dispersion models using polynomial chaos
    Konda, Umamaheswara
    Singh, Tarunraj
    Singla, Puneet
    Scott, Peter
    ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (12) : 1608 - 1618
  • [7] Uncertainty Propagation in Puff-based Dispersion Models using Polynomial Chaos
    Konda, Umamaheswara
    Singh, Tarunraj
    Singla, Puneet
    Scott, Peter D.
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 710 - +
  • [8] Estimation of acoustic propagation uncertainty through polynomial chaos expansions
    LePage, Kevin D.
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 1402 - 1406
  • [9] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Wang, Fenggang
    Xiong, Fenfen
    Chen, Shishi
    Song, Jianmei
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1583 - 1604
  • [10] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Fenggang Wang
    Fenfen Xiong
    Shishi Chen
    Jianmei Song
    Structural and Multidisciplinary Optimization, 2019, 60 : 1583 - 1604