Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2019年 / 27卷 / 06期
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
[41]   The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time-Space Fractional Diffusion Equation [J].
Li, Dun-Gang ;
Chen, Yong-Gang ;
Gao, Yin-Xia ;
Yang, Fan ;
Xu, Jian-Ming ;
Li, Xiao-Xiao .
SYMMETRY-BASEL, 2023, 15 (04)
[42]   On regularization results for a two-dimensional nonlinear time-fractional inverse diffusion problem [J].
Hai, Dinh Nguyen Duy .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
[43]   An energy regularization method for the backward diffusion problem and its applications to image deblurring [J].
Han, Houde ;
Yan, Ming ;
Wu, Chunlin .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 4 (01) :177-194
[44]   The Backward Problem for Nonlinear Fractional Diffusion Equation with Time-Dependent Order [J].
Dien, Nguyen Minh ;
Trong, Dang Duc .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :3345-3359
[45]   The Backward Problem for Nonlinear Fractional Diffusion Equation with Time-Dependent Order [J].
Nguyen Minh Dien ;
Dang Duc Trong .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :3345-3359
[46]   Backward problem for time-space fractional diffusion equations in Hilbert scales [J].
Dang Duc Trong ;
Dinh Nguyen Duy Hai .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 :253-264
[47]   A new regularization method for a Cauchy problem of the time fractional diffusion equation [J].
Zheng, G. H. ;
Wei, T. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) :377-398
[48]   A new regularization method for a Cauchy problem of the time fractional diffusion equation [J].
G. H. Zheng ;
T. Wei .
Advances in Computational Mathematics, 2012, 36 :377-398
[49]   The fractional Landweber method for identifying the space source term problem for time-space fractional diffusion equation [J].
Yang, Fan ;
Pu, Qu ;
Li, Xiao-Xiao .
NUMERICAL ALGORITHMS, 2021, 87 (03) :1229-1255
[50]   An inverse problem for an inhomogeneous time-fractional diffusion equation: a regularization method and error estimate [J].
Nguyen Huy Tuan ;
Luu Vu Cam Hoan ;
Salih Tatar .
Computational and Applied Mathematics, 2019, 38