Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2019年 / 27卷 / 06期
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
[31]   Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation [J].
Wang, Jun-Gang ;
Wei, Ting ;
Zhou, Yu-Bin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :277-292
[32]   Regularization by projection for a backward problem of the time-fractional diffusion equation [J].
Ren, Caixuan ;
Xu, Xiang ;
Lu, Shuai .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (01) :121-139
[33]   On a space fractional backward diffusion problem and its approximation of local solution [J].
Triet Le Minh ;
Tran Thi Khieu ;
Tra Quoc Khanh ;
Hoang-Hung Vo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 :440-455
[34]   AN INVERSE TIME-DEPENDENT DIFFUSION COEFFICIENT PROBLEM FOR A SPACE-FRACTIONAL DIFFUSION EQUATION [J].
Djennadi, Smina ;
Abu Arqub, Omar ;
Abukhaled, Marwan ;
Shawagfeh, Nabil .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
[35]   Global solution of space-fractional diffusion equations with nonlinear reaction source terms [J].
Trong, Dang Duc ;
Dien, Nguyen Minh ;
Viet, Tran Quoc .
APPLICABLE ANALYSIS, 2020, 99 (15) :2707-2737
[36]   A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives [J].
Macias-Diaz, J. E. ;
Hendy, A. S. ;
De Staelen, R. H. .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 224 :98-107
[37]   A REGULARIZATION METHOD FOR BACKWARD PROBLEMS OF SINGULARLY PERTURBED PARABOLIC AND FRACTIONAL DIFFUSION EQUATIONS [J].
Wen, Jin ;
Liu, Yun-Long ;
Ren, Xue-Juan ;
O'Regan, Donal .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (04) :2212-2237
[38]   An Iterative Method for Backward Time-Fractional Diffusion Problem [J].
Wang, Jun-Gang ;
Wei, Ting .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) :2029-2041
[39]   A Mollification Regularization Method for the Inverse Source Problem for a Time Fractional Diffusion Equation [J].
Le Dinh Long ;
Yong Zhou ;
Tran Thanh Binh ;
Nguyen Can .
MATHEMATICS, 2019, 7 (11)
[40]   Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space [J].
Tran Thi Khieu ;
Hoang-Hung Vo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 :114-126