Stepwise regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem

被引:4
作者
Dang Duc Trong [2 ]
Dinh Nguyen Duy Hai [1 ]
Nguyen Dang Minh [2 ,3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Open Univ, Dept Fundamental Studies, Ho Chi Minh City, Vietnam
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2019年 / 27卷 / 06期
关键词
Space-fractional backward diffusion problem; ill-posed problem; regularization; convergence estimate; INVERSE PROBLEM; CALCULUS; FOURIER;
D O I
10.1515/jiip-2018-0033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the backward diffusion problem for a space-fractional diffusion equation (SFDE) with a nonlinear source, that is, to determine the initial data from a noisy final data. Very recently, some papers propose new modified regularization solutions to solve this problem. To get a convergence estimate, they required some strongly smooth conditions on the exact solution. In this paper, we shall release the strongly smooth conditions and introduce a stepwise regularization method to solve the backward diffusion problem. A numerical example is presented to illustrate our theoretical result.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
[21]   A modified regularized algorithm for a semilinear space-fractional backward diffusion problem [J].
Jiang, Xiaoying ;
Xu, Dinghua ;
Zhang, Qifeng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (16) :5996-6006
[22]   A Tikhonov regularization method for solving a backward time-space fractional diffusion problem [J].
Feng, Xiaoli ;
Zhao, Meixia ;
Qian, Zhi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
[23]   Galerkin Method for a Backward Problem of Time-Space Fractional Symmetric Diffusion Equation [J].
Zhang, Hongwu ;
Lv, Yong .
SYMMETRY-BASEL, 2023, 15 (05)
[24]   Tikhonov regularization method for a backward problem for the time-fractional diffusion equation [J].
Wang, Jun-Gang ;
Wei, Ting ;
Zhou, Yu-Bin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (18-19) :8518-8532
[25]   A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations [J].
Djennadi, Smina ;
Shawagfeh, Nabil ;
Abu Arqub, Omar .
CHAOS SOLITONS & FRACTALS, 2021, 150
[26]   A fractional Landweber method for solving backward time-fractional diffusion problem [J].
Han, Yaozong ;
Xiong, Xiangtuan ;
Xue, Xuemin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (01) :81-91
[27]   An Inverse Source Problem of Space-Fractional Diffusion Equation [J].
Liu, Songshu ;
Feng, Lixin ;
Zhang, Guilai .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) :4405-4424
[28]   On a backward problem for nonlinear fractional diffusion equations [J].
Nguyen Huy Tuan ;
Le Nhat Huynh ;
Tran Bao Ngoc ;
Yong Zhou .
APPLIED MATHEMATICS LETTERS, 2019, 92 :76-84
[29]   Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations [J].
Zhang, Xinxia ;
Wang, Jihan ;
Wu, Zhongshu ;
Tang, Zheyi ;
Zeng, Xiaoyan .
FRACTAL AND FRACTIONAL, 2024, 8 (07)
[30]   Data regularization for a backward time-fractional diffusion problem [J].
Wang, Liyan ;
Liu, Jijun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) :3613-3626