Peak force tapping atomic force microscopy for advancing cell and molecular biology

被引:30
作者
Li, Mi [1 ,2 ,3 ]
Xi, Ning [4 ]
Liu, Lianqing [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
LIVING CELLS; MECHANICAL CHARACTERIZATION; STAPHYLOCOCCUS-AUREUS; MEMBRANE-PROTEINS; NATIVE PROTEINS; AFM; CANCER; MICROVILLI; STIFFNESS; BINDING;
D O I
10.1039/d1nr01303c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
引用
收藏
页码:8358 / 8375
页数:18
相关论文
共 149 条
[1]   Time-Lapse AFM Imaging of DNA Conformational Changes Induced by Daunorubicin [J].
Alonso-Sarduy, Livan ;
Longo, Giovanni ;
Dietler, Giovanni ;
Kasas, Sandor .
NANO LETTERS, 2013, 13 (11) :5679-5684
[2]   Multiparametric Atomic Force Microscopy Imaging of Biomolecular and Cellular Systems [J].
Alsteens, David ;
Mueller, Daniel J. ;
Dufrene, Yves F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) :924-931
[3]  
Alsteens D, 2017, NAT NANOTECHNOL, V12, P177, DOI [10.1038/nnano.2016.228, 10.1038/NNANO.2016.228]
[4]  
Alsteens D, 2015, NAT METHODS, V12, P845, DOI [10.1038/NMETH.3479, 10.1038/nmeth.3479]
[5]   Implant infections: adhesion, biofilm formation and immune evasion [J].
Arciola, Carla Renata ;
Campoccia, Davide ;
Montanaro, Lucio .
NATURE REVIEWS MICROBIOLOGY, 2018, 16 (07) :397-409
[6]   Rigid helical-like assemblies from a self-aggregating tripeptide [J].
Bera, Santu ;
Mondal, Sudipta ;
Xue, Bin ;
Shimon, Linda J. W. ;
Cao, Yi ;
Gazit, Ehud .
NATURE MATERIALS, 2019, 18 (05) :503-+
[7]   Bacterial adhesion at the single-cell level [J].
Berne, Cecile ;
Ellison, Courtney K. ;
Ducret, Adrien ;
Brun, Yves V. .
NATURE REVIEWS MICROBIOLOGY, 2018, 16 (10) :616-627
[8]   Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry [J].
Bolla, Jani Reddy ;
Agasid, Mark T. ;
Mehmood, Shahid ;
Robinson, Carol V. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 88, 2019, 88 :85-111
[9]   Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability [J].
Brill-Karniely, Yifat ;
Dror, Dvir ;
Duanis-Assaf, Tal ;
Goldstein, Yoel ;
Schwob, Ouri ;
Millo, Talya ;
Orehov, Natalie ;
Stern, Tal ;
Jaber, Mohammad ;
Loyfer, Netanel ;
Vosk-Artzi, Margarita ;
Benyamini, Hadar ;
Bielenberg, Diane ;
Kaplan, Tommy ;
Buganim, Yosef ;
Reches, Meital ;
Benny, Ofra .
SCIENCE ADVANCES, 2020, 6 (03)
[10]   Force measurements with the atomic force microscope: Technique, interpretation and applications [J].
Butt, HJ ;
Cappella, B ;
Kappl, M .
SURFACE SCIENCE REPORTS, 2005, 59 (1-6) :1-152