Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring

被引:2
作者
Shen, Pao-sheng [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung 40704, Taiwan
关键词
NPMLE; Cumulative incidence function; Left truncation; EM algorithm; MAXIMUM-LIKELIHOOD-ESTIMATION; ASYMPTOTIC PROPERTIES; MODEL; GMLE; CONSISTENCY;
D O I
10.1007/s00180-021-01111-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider nonparametric estimation of the cumulative incidence function (CIF) for left-truncated and interval-censored competing risks (LT-ICC) data. To reduce the bias of the pseudo-likelihood estimator (PLE) of CIF in the literature, we proposed two alternative estimators. The first estimator, called the modified PLE (MPLE), is obtained based on the modified NPMLE of F(t). The second estimator, called the modified maximum likelihood estimator (MMLE), is derived using modified likelihood functions for LT-ICC data, where the left endpoints of the intervals for left-censored observations with failure type j are the maximum of left-truncated variables and the estimated left endpoint of the support of the observations. Simulation studies show that the MPLE and MMLE are less biased than the PLE for most of the cases considered and their standard deviations are significantly smaller than that of the PLE.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 24 条
[1]  
Aalen O., 1976, Scandinavian Journal of Statistics Theory and Applications, V3, P15
[2]   A proportional hazards model for arbitrarily censored and truncated data [J].
Alioum, A ;
Commenges, D .
BIOMETRICS, 1996, 52 (02) :512-524
[3]   Semiparametric mixture cure model analysis with competing risks data: Application to vascular access thrombosis data [J].
Chen, Chyong-Mei ;
Shen, Pao-sheng ;
Lin, Chih-Ching ;
Wu, Chih-Cheng .
STATISTICS IN MEDICINE, 2020, 39 (27) :4086-4099
[4]   Maximum Likelihood Estimation of Semiparametric Mixture Component Models for Competing Risks Data [J].
Choi, Sangbum ;
Huang, Xuelin .
BIOMETRICS, 2014, 70 (03) :588-598
[5]  
FRYDMAN H, 1994, J ROY STAT SOC B MET, V56, P71
[6]  
GENTLEMAN R, 1994, BIOMETRIKA, V81, P618
[7]  
Groeneboom P., 1992, INFORM BOUNDS NONPAR, V19, DOI [10.1007/978-3-0348-8621-5, DOI 10.1007/978-3-0348-8621-5]
[8]   On nonparametric maximum likelihood estimation with interval censoring and left truncation [J].
Hudgens, MG .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :573-587
[9]   Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation [J].
Hudgens, MG ;
Satten, GA ;
Longini, IM .
BIOMETRICS, 2001, 57 (01) :74-80
[10]  
Kalbfleisch J.D., 2011, The statistical analysis of failure time data, DOI [10.1002/9781118032985, DOI 10.1002/9781118032985]