The k-Fibonacci sequence and the Pascal 2-triangle

被引:166
作者
Falcon, Sergio [1 ]
Plaza, Angel [1 ]
机构
[1] ULPGC, Dept Math, Las Palmas Gran Canaria 35017, Spain
关键词
D O I
10.1016/j.chaos.2006.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general k-Fibonacci sequence {F-k,F-n}(n=0)(infinity) were found by studying the recursive application of two geometrical transformations used in the well-known 4-triangle longest-edge (4TLE) partition. This sequence generalizes, between others, both the classical Fibonacci sequence and the Pell sequence. In this paper many properties of these numbers are deduced and related with the so-called Pascal 2-triangle. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 41 条
[1]  
Benjamin AT., 2003, Math. magazine, V76, P182
[2]  
De Spinadel VW., 2002, INT MATH J, V2, P279
[3]   Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (05) :1025-1033
[4]   Topics in the mathematical physics of E-infinity theory [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :656-663
[5]   Hilbert space, Poincare dodecahedron and golden mean transfiniteness [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :787-793
[6]   The Fibonacci code behind super strings and P-Branes.: An answer to M. Kaku's fundamental question [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :537-547
[7]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[8]   Stability analysis of the two-slit experiment with quantum particles [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :291-294
[9]   Dead or alive: desperately seeking Schrodinger's cat [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 26 (03) :673-676
[10]   On the cohomology and instantons number in E-infinity Cantorian spacetime [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 26 (01) :13-17