Gevrey regularity for the Navier-Stokes in a half-space

被引:14
作者
Camliyurt, Guher [1 ]
Kukavica, Igor [1 ]
Vicol, Vlad [2 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Real analyticity; Gevrey regularity; Bounded domain; Navier-Stokes equations; SPATIAL ANALYTICITY; EQUATIONS; EULER; EXISTENCE; BOUNDARY; RADIUS; DOMAIN;
D O I
10.1016/j.jde.2018.05.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Navier-Stokes equations posed on the half space, with Dirichlet boundary conditions. We give a direct energy-based proof for the instantaneous space-time analyticity and Gevrey-class regularity of the solution, uniformly up to the boundary of the half space. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:4052 / 4075
页数:24
相关论文
共 34 条
[1]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[2]   Local existence and Gevrey regularity of 3-D Navier-Stokes equations with lp initial data [J].
Biswas, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (02) :429-447
[3]   Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted lp initial data [J].
Biswas, Animikh ;
Swanson, David .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1157-1188
[4]   On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades [J].
Biswas, Animikh ;
Foias, Ciprian .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) :739-777
[5]   Dissipation versus quadratic nonlinearity: from a priori energy bound to higher order regularizing effect [J].
Biswas, Animikh ;
Tadmor, Eitan .
NONLINEARITY, 2014, 27 (03) :545-562
[6]   Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation [J].
Bona, JL ;
Grujic, Z ;
Kalisch, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06) :783-797
[7]   Local analyticity radii of solutions to the 3D Navier-Stokes equations with locally analytic forcing [J].
Bradshaw, Zachary ;
Grujic, Zoran ;
Kukavica, Igor .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3955-3975
[8]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[9]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[10]   Time analyticity with higher norm estimates for the 2D Navier-Stokes equations [J].
Foias, Ciprian ;
Jolly, Michael S. ;
Lan, Ruomeng ;
Rupam, Rishika ;
Yang, Yong ;
Zhang, Bingsheng .
IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (03) :766-810