Two-dimensional numerical simulation of tungsten melting in exposure to pulsed electron beam

被引:8
作者
Arakcheev, A. S. [1 ,2 ,3 ]
Apushkinskaya, D. E. [4 ,5 ]
Kandaurov, I., V [1 ]
Kasatov, A. A. [1 ]
Kurkuchekov, V. V. [1 ]
Lazareva, G. G. [1 ,6 ]
Maksimova, A. G. [2 ,6 ]
Popov, V. A. [1 ,2 ]
Snytnikov, A., V [6 ]
Trunev, Yu A. [1 ]
Vasilyev, A. A. [1 ,2 ]
Vyacheslavov, L. N. [1 ,2 ]
机构
[1] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Novosibirsk State Tech Univ, Novosibirsk, Russia
[4] Saarland Univ, Saarbrucken, Germany
[5] St Petersburg State Univ, St Petersburg, Russia
[6] SB RAS, Inst Computat Math & Math Geophys, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
Numerical simulation; Pulsed heating; Melting; HEAT LOADS; EROSION; ITER;
D O I
10.1016/j.fusengdes.2018.05.008
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Melting of the surface of tungsten exposed to a pulsed electron beam has been simulated numerically. Comparison of the experimentally measured at BETA facility time dependence of the radius of the molten region with the calculated data has shown that the surface cooling caused by evaporation has a significant effect on the temperature distribution and melting of the material at sufficiently high densities of the surface heating power. This result validates the created theoretical model of the tungsten melting and evaporation in exposure to a pulsed electron beam. The studied mechanism of the limitation of the surface temperature is different from the well-studied vapor shielding. The presented model is a step to correct interpretation of the erosion caused by the melt motion and splashing in exposure to the ITER-relevant pulsed heating by electron beam.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 16 条
[1]  
Berger M J., 1983, STOPPING POWERS RANG
[2]   ITER material properties handbook [J].
Davis, JW ;
Smith, PD .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :1593-1596
[3]  
Ho C.Y., 1972, J. Phys. Chem. Ref. Data, V1, P279, DOI [10.1063/1.3253100, DOI 10.1063/1.3253100]
[4]   Modeling of macroscopic melt layer splashing during plasma instabilities [J].
Miloshevsky, G. ;
Hassanein, A. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S74-S77
[5]   A full tungsten divertor for ITER: Physics issues and design status [J].
Pitts, R. A. ;
Carpentier, S. ;
Escourbiac, F. ;
Hirai, T. ;
Komarov, V. ;
Lisgo, S. ;
Kukushkin, A. S. ;
Loarte, A. ;
Merola, M. ;
Naik, A. Sashala ;
Mitteau, R. ;
Sugihara, M. ;
Bazylev, B. ;
Stangeby, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S48-S56
[6]   Theoretical Modeling of Shielding for Plasma Flow and Electron Beam Heating [J].
Popov, V. A. ;
Arakcheev, A. S. ;
Burdakov, A. V. ;
Kasatov, A. A. ;
Vasilyev, A. A. ;
Vyacheslavov, L. N. .
OPEN MAGNETIC SYSTEMS FOR PLASMA CONFINEMENT (OS2016), 2016, 1771
[7]   Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase [J].
Pottlacher, G .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1999, 250 :177-181
[8]  
Safronov VM, 2008, PROBL ATOM SCI TECH, P52
[9]  
Samarskii A. A., 2003, COMPUTATIONAL HEAT T
[10]   Erosion of a tungsten limiter under high heat flux in TEXTOR [J].
Sergienko, G. ;
Bazylev, B. ;
Huber, A. ;
Kreter, A. ;
Litnovsky, A. ;
Rubel, M. ;
Philipps, V. ;
Pospieswzyk, A. ;
Mertens, Ph. ;
Samm, U. ;
Schweer, B. ;
Schmitz, O. ;
Tokar, M. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) :96-100