Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States

被引:3
作者
Malone, Sparkle L. [1 ,2 ]
Oh, Youmi [3 ]
Arndt, Kyle A. [4 ]
Burba, George [5 ,6 ,7 ]
Commane, Roisin [8 ]
Contosta, Alexandra R. [4 ]
Goodrich, Jordan P. [9 ]
Loescher, Henry W. [10 ,11 ]
Starr, Gregory [12 ]
Varner, Ruth K. [4 ,13 ]
机构
[1] Florida Int Univ, Inst Environm, 11200 SW 8th St, Miami, FL 33199 USA
[2] Florida Int Univ, Dept Biol Sci, 11200 SW 8th St, Miami, FL 33199 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] Univ New Hampshire, Earth Syst Res Ctr, Inst Study Earth Oceans & Space, 8 Coll Rd, Durham, NH 03824 USA
[5] LI COR Biosci, 4421 Super St, Lincoln, NE 68504 USA
[6] Univ Nebraska, Robert B Daugherty Water Food Global Inst, Lincoln, NE 68583 USA
[7] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA
[8] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[9] Univ Waikato, Sch Sci, Gate 1 Knighton Rd,Hillcrest 3240, Hamilton, New Zealand
[10] Natl Ecol Observ Network NEON, Battelle, Boulder, CO 80301 USA
[11] Univ Colorado, Inst Alpine & Arctic Res, Boulder, CO 80301 USA
[12] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA
[13] Univ New Hampshire, Dept Earth Sci, 56 Coll Rd, Durham, NH 03824 USA
基金
美国国家科学基金会;
关键词
CARBON;
D O I
10.5194/bg-19-2507-2022
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the sources and sinks of methane (CH4) is critical to both predicting and mitigating future climate change. There are large uncertainties in the global budget of atmospheric CH4, but natural emissions are estimated to be of a similar magnitude to anthropogenic emissions. To understand CH4 flux from biogenic sources in the United States (US) of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover. To determine the gaps in physical infrastructure for developing this network, we need to understand the landscape representativeness of the current infrastructure. We focus here on eddy covariance (EC) flux towers because they are essential for a bottom-up framework that bridges the gap between point-based chamber measurements and airborne or satellite platforms that inform policy decisions and global climate agreements. Using dissimilarity, multidimensional scaling, and cluster analysis, the US was divided into 10 clusters distributed across temperature and precipitation gradients. We evaluated dissimilarity within each cluster for research sites with active CH4 EC towers to identify gaps in existing infrastructure that limit our ability to constrain the contribution of US biogenic CH4 emissions to the global budget. Through our analysis using climate, land cover, and location variables, we identified priority areas for research infrastructure to provide a more complete understanding of the CH4 flux potential of ecosystem types across the US. Clusters corresponding to Alaska and the Rocky Mountains, which are inherently difficult to capture, are the most poorly represented, and all clusters require a greater representation of vegetation types.
引用
收藏
页码:2507 / 2522
页数:16
相关论文
共 102 条
  • [61] Michalak A. M., 2009, 1 M CARBON CYCLE SCI, P102, DOI [10.1029/2009-o120003, DOI 10.1029/2009-O120003]
  • [62] Standardisation of eddy-covariance flux measurements of methane and nitrous oxide
    Nemitz, Eiko
    Mammarella, Ivan
    Ibrom, Andreas
    Aurela, Mika
    Burba, George G.
    Dengel, Sigrid
    Gielen, Bert
    Grelle, Achim
    Heinesch, Bernard
    Herbst, Mathias
    Hortnagl, Lukas
    Klemedtsson, Leif
    Lindroth, Anders
    Lohila, Annalea
    McDermitt, Dayle K.
    Meier, Philip
    Merbold, Lutz
    Nelson, David
    Nicolini, Giacomo
    Nilsson, Mats B.
    Peltola, Olli
    Rinne, Janne
    Zahniser, Mark
    [J]. INTERNATIONAL AGROPHYSICS, 2018, 32 (04) : 517 - +
  • [63] Declines in methane uptake in forest soils
    Ni, Xiangyin
    Groffman, Peter M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : 8587 - 8590
  • [64] Very Strong. Atmospheric Methane Growth in the 4 Years 2014-2017: Implications for the paris Agreement
    Nisbet, E. G.
    Manning, M. R.
    Dlugokencky, E. J.
    Fisher, R. E.
    Lowry, D.
    Michel, S. E.
    Myhre, C. Lund
    Platt, M.
    Allen, G.
    Bousquet, P.
    Brownlow, R.
    Cain, M.
    France, J. L.
    Hermansen, O.
    Hossaini, R.
    Jones, A. E.
    Levin, I
    Manning, A. C.
    Myhre, G.
    Pyle, J. A.
    Vaughn, B. H.
    Warwick, N. J.
    White, J. W. C.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (03) : 318 - 342
  • [65] Methane on the Rise-Again
    Nisbet, Euan G.
    Dlugokencky, Edward J.
    Bousquet, Philippe
    [J]. SCIENCE, 2014, 343 (6170) : 493 - 495
  • [66] The AmeriFlux network: A coalition of the willing
    Novick, K. A.
    Biederman, J. A.
    Desai, A. R.
    Litvak, M. E.
    Moore, D. J. P.
    Scott, R. L.
    Torn, M. S.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2018, 249 : 444 - 456
  • [67] Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic
    Oh, Youmi
    Zhuang, Qianlai
    Liu, Licheng
    Welp, Lisa R.
    Lau, Maggie C. Y.
    Onstott, Tullis C.
    Medvigy, David
    Bruhwiler, Lori
    Dlugokencky, Edward J.
    Hugelius, Gustaf
    D'Imperio, Ludovica
    Elberling, Bo
    [J]. NATURE CLIMATE CHANGE, 2020, 10 (04) : 317 - +
  • [68] Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks
    Papale, Dario
    Black, T. Andrew
    Carvalhais, Nuno
    Cescatti, Alessandro
    Chen, Jiquan
    Jung, Martin
    Kiely, Gerard
    Lasslop, Gitta
    Mahecha, Miguel D.
    Margolis, Hank
    Merbold, Lutz
    Montagnani, Leonardo
    Moors, Eddy
    Olesen, Jorgen E.
    Reichstein, Markus
    Tramontana, Gianluca
    van Gorsel, Eva
    Wohlfahrt, Georg
    Raduly, Botond
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (10) : 1941 - 1957
  • [69] Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements
    Peltola, O.
    Mammarella, I.
    Haapanala, S.
    Burba, G.
    Vesala, T.
    [J]. BIOGEOSCIENCES, 2013, 10 (06) : 3749 - 3765
  • [70] Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
    Peltola, Olli
    Vesala, Timo
    Gao, Yao
    Raty, Olle
    Alekseychik, Pavel
    Aurela, Mika
    Chojnicki, Bogdan
    Desai, Ankur R.
    Dolman, Albertus J.
    Euskirchen, Eugenie S.
    Friborg, Thomas
    Goeckede, Mathias
    Helbig, Manuel
    Humphreys, Elyn
    Jackson, Robert B.
    Jocher, Georg
    Joos, Fortunat
    Klatt, Janina
    Knox, Sara H.
    Kowalska, Natalia
    Kutzbach, Lars
    Lienert, Sebastian
    Lohila, Annalea
    Mammarella, Ivan
    Nadeau, Daniel F.
    Nilsson, Mats B.
    Oechel, Walter C.
    Peichl, Matthias
    Pypker, Thomas
    Quinton, William
    Rinne, Janne
    Sachs, Torsten
    Samson, Mateusz
    Schmid, Hans Peter
    Sonnentag, Oliver
    Wille, Christian
    Zona, Donatella
    Aalto, Tuula
    [J]. EARTH SYSTEM SCIENCE DATA, 2019, 11 (03) : 1263 - 1289