Growth of hematite by using ultrasonic nebulizer pyrolysis for use in a photoelectrochemical electrode

被引:3
作者
Ha, Jin-Wook [1 ]
Ryu, Hyukhyun [1 ]
Lee, Sang-Jin [2 ]
Lee, Won-Jae [3 ]
机构
[1] Inje Univ, Dept Nanosci & Engn, High Safety Vehicle Core, Technol Res Ctr, Gimhae 50834, South Korea
[2] Inje Univ, Dept Fus Technol Energy, Gimhae 50834, South Korea
[3] Dong Eui Univ, Dept Mat & Components Engn, Busan 47340, South Korea
基金
新加坡国家研究基金会;
关键词
Hematite; Photoelectrochemical; Photoelectrode; Ultrasonic nebulizer pyrolysis; THIN-FILMS; NANOSTRUCTURED HEMATITE; WATER OXIDATION; ALPHA-FE2O3; GENERATION; ENERGY;
D O I
10.3938/jkps.70.802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, a hematite photoelectrode was grown on a fluorine-doped tin-oxide substrate by using the ultrasonic nebulizer pyrolysis method. We analyzed the morphological, structural, optical, electrical, and photoelectrochemical properties of hematite samples grown at different temperatures. Field emission scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy and electrochemical impedance spectroscopy with a 3-electrode potentiostat, were used to characterize hematite. The hematite sample grown at 300 A degrees C had the highest crystallinity and the largest excited minority carrier density. Consequently, the hematite grown at 300 A degrees C had the highest photocurrent density of 0.39 mA/cm(2) at 0.55 V (vs. saturated calomel electrode (Sat. 3.3 M KCl)).
引用
收藏
页码:802 / 808
页数:7
相关论文
共 42 条
[1]   Effect of different electrolytes on porous GaN using photo-electrochemical etching [J].
Al-Heuseen, K. ;
Hashim, M. R. ;
Ali, N. K. .
APPLIED SURFACE SCIENCE, 2011, 257 (14) :6197-6201
[2]  
Ali S. M., 2012, IN J ADV SCI TECH RE, V5, P2249
[3]   X-Ray diffraction and Raman spectroscopy for a better understanding of ZnO: Al growth process [J].
Charpentier, C. ;
Prod'homme, P. ;
Maurin, I. ;
Chaigneau, M. ;
Roca i Cabarrocas, P. .
EPJ PHOTOVOLTAICS, 2011, 2
[4]  
Chauhan D, 2006, B MATER SCI, V29, P709
[5]   Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting [J].
Chernomordik, Boris D. ;
Russell, Harry B. ;
Cvelbar, Uros ;
Jasinski, Jacek B. ;
Kumar, Vivekanand ;
Deutsch, Todd ;
Sunkara, Mahendra K. .
NANOTECHNOLOGY, 2012, 23 (19)
[6]   Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes [J].
Cho, Seungho ;
Jang, Ji-Wook ;
Lee, Kun-Hong ;
Lee, Jae Sung .
APL MATERIALS, 2014, 2 (01)
[7]   Preferential Orientation in Hematite Films for Solar Hydrogen Production via Water Splitting [J].
Cornuz, Maurin ;
Graetzel, Michael ;
Sivula, Kevin .
CHEMICAL VAPOR DEPOSITION, 2010, 16 (10-12) :291-295
[8]  
Cullity B. D., 1978, ELEMENTS XRAY DIFFRA, P24
[9]   Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL) [J].
Deb, SK .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 88 (01) :1-10
[10]   Preparation of α-Fe2O3 particles with controlled shape and size via a facile hydrothermal route [J].
Dong, Q. ;
Yin, S. ;
Guo, C. S. ;
Li, H. H. ;
Kumada, N. ;
Takei, T. ;
Yonesaki, Y. ;
Kinomura, N. ;
Sato, T. .
4TH INTERNATIONAL SYMPOSIUM ON FUNCTIONAL MATERIALS (ISFM2011), 2012, 339