Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures

被引:72
作者
Klinker, Kristina [1 ,2 ]
Schaefer, Olga [1 ]
Huesmann, David [1 ]
Bauer, Tobias [1 ]
Capeloa, Leon [1 ]
Braun, Lydia [1 ]
Stergiou, Natascha [3 ]
Schinnerer, Meike [1 ]
Dirisala, Anjaneyulu [4 ]
Miyata, Kanjiro [5 ]
Osada, Kensuke [6 ]
Cabral, Horacio [6 ]
Kataoka, Kazunori [4 ,7 ]
Barz, Matthias [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organ Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
[2] Graduiertenschule MAt Sci MainZ, Mainz, Germany
[3] Johannes Gutenberg Univ Mainz, Univ Med Mainz, Inst Immunol, Mainz, Germany
[4] KAWASAKI Inst Ind Promot, Innovat Ctr NanoMed, Kawasaki, Kanagawa 2100821, Japan
[5] Univ Tokyo, Grad Sch Engn, Dept Mat Engn, Tokyo, Japan
[6] Univ Tokyo, Grad Sch Engn, Dept Bioengn, Tokyo, Japan
[7] Univ Tokyo, Policy Alternat Res Inst, Tokyo, Japan
关键词
bioreversible cross-linking; micelles; reactive polypept(o)ides; secondary structure; self-assembly; BLOCK-COPOLYMER MICELLES; DIBLOCK OLIGOMERS; DISULFIDE BOND; PEPTIDES; POLYMERS; DELIVERY; DRUGS;
D O I
10.1002/anie.201702624
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple yet powerful approach to versatile peptide-based core-shell nanostructures.
引用
收藏
页码:9608 / 9613
页数:6
相关论文
共 43 条
[1]  
Barz M., 2014, THIOL PROTECTED AMIN
[2]   Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications [J].
Blanazs, Adam ;
Armes, Steven P. ;
Ryan, Anthony J. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (4-5) :267-277
[3]   Self-assembly of Aβ(10-35)-PEG block copolymer fibrils [J].
Burkoth, TS ;
Benzinger, TLS ;
Urban, V ;
Lynn, DG ;
Meredith, SC ;
Thiyagarajan, P .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7429-7430
[4]   C-terminal PEG blocks the irreversible step in β-amyloid(10-35) fibrillogenesis [J].
Burkoth, TS ;
Benzinger, TLS ;
Jones, DNM ;
Hallenga, K ;
Meredith, SC ;
Lynn, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (30) :7655-7656
[5]   Polypeptide self-assemblies: nanostructures and bioapplications [J].
Cai, Chunhua ;
Lin, Jiaping ;
Lu, Yingqing ;
Zhang, Qian ;
Wang, Liquan .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (21) :5985-6012
[6]   Self-assembly of polypeptide-based block copolymer amphiphiles [J].
Carlsen, Autumn ;
Lecommandoux, Sebastein .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (05) :329-339
[7]   Self-assembled smectic phases in rod-coil block copolymers [J].
Chen, JT ;
Thomas, EL ;
Ober, CK ;
Mao, GP .
SCIENCE, 1996, 273 (5273) :343-346
[8]   Rational design of oligopeptide organizers for the formation of poly(ethylene oxide) nanofibers [J].
Eckhardt, D ;
Groenewolt, M ;
Krause, E ;
Börner, HG .
CHEMICAL COMMUNICATIONS, 2005, (22) :2814-2816
[9]   Biohybrid block copolymers: towards functional micelles and vesicles [J].
Fuks, Gad ;
Talom, Renee Mayap ;
Gauffre, Fabienne .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (05) :2475-2493
[10]  
Gilroy JB, 2010, NAT CHEM, V2, P566, DOI [10.1038/nchem.664, 10.1038/NCHEM.664]