Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic

被引:15
作者
Mignon, David [1 ]
Simonson, Thomas [1 ]
机构
[1] Ecole Polytech, CNRS, UMR 7654, Lab Biochim,Dept Biol, Palaiseau, France
关键词
molecular modeling; force field; Proteus package; inverse protein folding problem; DEAD-END ELIMINATION; GENERALIZED BORN SOLVENT; ENERGY FUNCTIONS; LIGAND-BINDING; CONSTANT-PH; OPTIMIZATION; EFFICIENT; PROBABILITY; PREDICTION; STABILITY;
D O I
10.1002/jcc.24393
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Computational protein design depends on an energy function and an algorithm to search the sequence/conformation space. We compare three stochastic search algorithms: a heuristic, Monte Carlo (MC), and a Replica Exchange Monte Carlo method (REMC). The heuristic performs a steepest-descent minimization starting from thousands of random starting points. The methods are applied to nine test proteins from three structural families, with a fixed backbone structure, a molecular mechanics energy function, and with 1, 5, 10, 20, 30, or all amino acids allowed to mutate. Results are compared to an exact, Cost Function Network method that identifies the global minimum energy conformation (GMEC) in favorable cases. The designed sequences accurately reproduce experimental sequences in the hydrophobic core. The heuristic and REMC agree closely and reproduce the GMEC when it is known, with a few exceptions. Plain MC performs well for most cases, occasionally departing from the GMEC by 3-4 kcal/mol. With REMC, the diversity of the sequences sampled agrees with exact enumeration where the latter is possible: up to 2 kcal/mol above the GMEC. Beyond, room temperature replicas sample sequences up to 10 kcal/mol above the GMEC, providing thermal averages and a solution to the inverse protein folding problem. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1781 / 1793
页数:13
相关论文
共 71 条
[1]   BIASED PROBABILITY MONTE-CARLO CONFORMATIONAL SEARCHES AND ELECTROSTATIC CALCULATIONS FOR PEPTIDES AND PROTEINS [J].
ABAGYAN, R ;
TOTROV, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (03) :983-1002
[2]   Predicting the Acid/Base Behavior of Proteins: A Constant-pH Monte Carlo Approach with Generalized Born Solvent [J].
Aleksandrov, Alexey ;
Polydorides, Savvas ;
Archontis, Georgios ;
Simonson, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (32) :10634-10648
[3]   An Efficient Algorithm for Multistate Protein Design Based on FASTER [J].
Allen, Benjamin D. ;
Mayo, Stephen L. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (05) :904-916
[4]   Computational protein design as an optimization problem [J].
Allouche, David ;
Andre, Isabelle ;
Barbe, Sophie ;
Davies, Jessica ;
de Givry, Simon ;
Katsirelos, George ;
O'Sullivan, Barry ;
Prestwich, Steve ;
Schiex, Thomas ;
Traore, Seydou .
ARTIFICIAL INTELLIGENCE, 2014, 212 :59-79
[5]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[6]  
[Anonymous], 1992, Version 3.1: a system for X-ray crystallography and NMR
[7]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[8]   Computational protein design: Software implementation, parameter optimization, and performance of a simple model [J].
Busch, Marcel Schmidt Am ;
Lopes, Anne ;
Mignon, David ;
Simonson, Thomas .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (07) :1092-1102
[9]   Computer-based design of novel protein structures [J].
Butterfoss, Glenn L. ;
Kuhlman, Brian .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2006, 35 :49-65
[10]  
Chipot C., 2007, Free Energy Calculations: Theory and Applications in Chemistry and Biology, DOI DOI 10.1007/978-3-540-38448-9