NANOPORE FORCE SPECTROSCOPY TOOLS FOR ANALYZING SINGLE BIOMOLECULAR COMPLEXES

被引:25
作者
Dudko, Olga K. [1 ,2 ]
Mathe, Jerome [3 ]
Meller, Amit [4 ,5 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[3] Univ Evry Val Essonne, CEA, CNRS, Lab LAMBE,UMR 8587, Evry, France
[4] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
METHODS IN ENZYMOLOGY, VOL 475: SINGLE MOLECULE TOOLS, PT B: SUPER-RESOLUTION, PARTICLE TRACKING, MULTIPARAMETER, AND FORCE BASED METHODS | 2010年 / 475卷
基金
美国国家科学基金会;
关键词
DNA-MOLECULES; FABRICATION; DYNAMICS; KINETICS; ADHESION;
D O I
10.1016/S0076-6879(10)75021-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The time-dependent response of individual biomolecular complexes to an applied force can reveal their mechanical properties, interactions with other biomolecules, and self-interactions. In the past decade, a number of single-molecule methods have been developed and applied to a broad range of biological systems, such as nucleic acid complexes, enzymes and proteins in the skeletal and cardiac muscle sarcomere. Nanopore force spectroscopy (NFS) is an emerging single-molecule method, which takes advantage of the native electrical charge of biomolecule to exert a localized bond-rupture force and measure the biomolecule response. Here, we review the basic principles of the method and discuss two bond breakage modes utilizing either a fixed voltage or a steady voltage ramp. We describe a unified theoretical formalism to extract kinetic information from the NFS data, and illustrate the utility of this formalism by analyzing data from nanopore unzipping of individual DNA hairpin molecules, where the two bond breakage modes were applied.
引用
收藏
页码:565 / 589
页数:25
相关论文
共 44 条
  • [21] Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis
    Kim, Min Jun
    Wanunu, Meni
    Bell, David C.
    Meller, Amit
    [J]. ADVANCED MATERIALS, 2006, 18 (23) : 3149 - +
  • [22] Brownian motion in a field of force and the diffusion model of chemical reactions
    Kramers, HA
    [J]. PHYSICA, 1940, 7 : 284 - 304
  • [23] Ion-beam sculpting at nanometre length scales
    Li, J
    Stein, D
    McMullan, C
    Branton, D
    Aziz, MJ
    Golovchenko, JA
    [J]. NATURE, 2001, 412 (6843) : 166 - 169
  • [24] Reversible unfolding of single RNA molecules by mechanical force
    Liphardt, J
    Onoa, B
    Smith, SB
    Tinoco, I
    Bustamante, C
    [J]. SCIENCE, 2001, 292 (5517) : 733 - 737
  • [25] Mechanical unfolding intermediates in titin modules
    Marszalek, PE
    Lu, H
    Li, HB
    Carrion-Vazquez, M
    Oberhauser, AF
    Schulten, K
    Fernandez, JM
    [J]. NATURE, 1999, 402 (6757) : 100 - 103
  • [26] Equilibrium and irreversible unzipping of DNA in a nanopore
    Mathé, J
    Arinstein, A
    Rabin, Y
    Meller, A
    [J]. EUROPHYSICS LETTERS, 2006, 73 (01): : 128 - 134
  • [27] Nanopore unzipping of individual DNA hairpin molecules
    Mathé, J
    Visram, H
    Viasnoff, V
    Rabin, Y
    Meller, A
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (05) : 3205 - 3212
  • [28] Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores
    McNally, Ben
    Wanunu, Meni
    Meller, Amit
    [J]. NANO LETTERS, 2008, 8 (10) : 3418 - 3422
  • [29] Rapid nanopore discrimination between single polynucleotide molecules
    Meller, A
    Nivon, L
    Brandin, E
    Golovchenko, J
    Branton, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (03) : 1079 - 1084