NANOPORE FORCE SPECTROSCOPY TOOLS FOR ANALYZING SINGLE BIOMOLECULAR COMPLEXES

被引:25
作者
Dudko, Olga K. [1 ,2 ]
Mathe, Jerome [3 ]
Meller, Amit [4 ,5 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[3] Univ Evry Val Essonne, CEA, CNRS, Lab LAMBE,UMR 8587, Evry, France
[4] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[5] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
METHODS IN ENZYMOLOGY, VOL 475: SINGLE MOLECULE TOOLS, PT B: SUPER-RESOLUTION, PARTICLE TRACKING, MULTIPARAMETER, AND FORCE BASED METHODS | 2010年 / 475卷
基金
美国国家科学基金会;
关键词
DNA-MOLECULES; FABRICATION; DYNAMICS; KINETICS; ADHESION;
D O I
10.1016/S0076-6879(10)75021-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The time-dependent response of individual biomolecular complexes to an applied force can reveal their mechanical properties, interactions with other biomolecules, and self-interactions. In the past decade, a number of single-molecule methods have been developed and applied to a broad range of biological systems, such as nucleic acid complexes, enzymes and proteins in the skeletal and cardiac muscle sarcomere. Nanopore force spectroscopy (NFS) is an emerging single-molecule method, which takes advantage of the native electrical charge of biomolecule to exert a localized bond-rupture force and measure the biomolecule response. Here, we review the basic principles of the method and discuss two bond breakage modes utilizing either a fixed voltage or a steady voltage ramp. We describe a unified theoretical formalism to extract kinetic information from the NFS data, and illustrate the utility of this formalism by analyzing data from nanopore unzipping of individual DNA hairpin molecules, where the two bond breakage modes were applied.
引用
收藏
页码:565 / 589
页数:25
相关论文
共 44 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules
    Akeson, M
    Branton, D
    Kasianowicz, JJ
    Brandin, E
    Deamer, DW
    [J]. BIOPHYSICAL JOURNAL, 1999, 77 (06) : 3227 - 3233
  • [3] Dynamics of DNA molecules in a membrane channel probed by active control techniques
    Bates, M
    Burns, M
    Meller, A
    [J]. BIOPHYSICAL JOURNAL, 2003, 84 (04) : 2366 - 2372
  • [4] BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
  • [5] Theoretical study of sequence-dependent nanopore unzipping of DNA
    Bockelmann, U.
    Viasnoff, V.
    [J]. BIOPHYSICAL JOURNAL, 2008, 94 (07) : 2716 - 2724
  • [6] Self-energy-limited ion transport in subnanometer channels
    Bonthuis, Douwe Jan
    Zhang, Jingshan
    Hornblower, Breton
    Mathe, Jerome
    Shklovskii, Boris I.
    Meller, Amit
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [7] Direct observation of the three-state folding of a single protein molecule
    Cecconi, C
    Shank, EA
    Bustamante, C
    Marqusee, S
    [J]. SCIENCE, 2005, 309 (5743) : 2057 - 2060
  • [8] Intrinsic rates and activation free energies from single-molecule pulling experiments
    Dudko, OK
    Hummer, G
    Szabo, A
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [9] Theory, analysis, and interpretation of single-molecule force spectroscopy experiments
    Dudko, Olga K.
    Hummer, Gerhard
    Szabo, Attila
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (41) : 15755 - 15760
  • [10] Extracting kinetics from single-molecule force spectroscopy:: Nanopore unzipping of DNA hairpins
    Dudko, Olga K.
    Mathe, Jerome
    Szabo, Attila
    Meller, Amit
    Hummer, Gerhard
    [J]. BIOPHYSICAL JOURNAL, 2007, 92 (12) : 4188 - 4195