LARGE-CONTEXT CONVERSATIONAL REPRESENTATION LEARNING: SELF-SUPERVISED LEARNING FOR CONVERSATIONAL DOCUMENTS

被引:0
|
作者
Masumura, Ryo [1 ]
Makishima, Naoki [1 ]
Ihori, Mana [1 ]
Takashima, Akihiko [1 ]
Tanaka, Tomohiro [1 ]
Orihashi, Shota [1 ]
机构
[1] NTT Corp, NTT Media Intelligence Labs, Tokyo, Japan
来源
2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT) | 2021年
关键词
Utterance-level sequential labeling; large-context conversational representation learning; self-supervised learning; conversational documents;
D O I
10.1109/SLT48900.2021.9383584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel self-supervised learning method for handling conversational documents consisting of transcribed text of human-to-human conversations. One of the key technologies for understanding conversational documents is utterance-level sequential labeling, where labels are estimated from the documents in an utterance-by-utterance manner. The main issue with utterance-level sequential labeling is the difficulty of collecting labeled conversational documents, as manual annotations are very costly. To deal with this issue, we propose large-context conversational representation learning (LC-CRL), a self-supervised learning method specialized for conversational documents. A self-supervised learning task in LC-CRL involves the estimation of an utterance using all the surrounding utterances based on large-context language modeling. In this way, LC-CRL enables us to effectively utilize unlabeled conversational documents and thereby enhances the utterance-level sequential labeling. The results of experiments on scene segmentation tasks using contact center conversational datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1012 / 1019
页数:8
相关论文
共 50 条
  • [41] Mixing up contrastive learning: Self-supervised representation learning for time series
    Wickstrom, Kristoffer
    Kampffmeyer, Michael
    Mikalsen, Karl Oyvind
    Jenssen, Robert
    PATTERN RECOGNITION LETTERS, 2022, 155 : 54 - 61
  • [42] A COMPREHENSIVE STUDY ON SELF-SUPERVISED DISTILLATION FOR SPEAKER REPRESENTATION LEARNING
    Chen, Zhengyang
    Qian, Yao
    Han, Bing
    Qian, Yanmin
    Zeng, Michael
    2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, : 599 - 604
  • [43] AN ITERATIVE FRAMEWORK FOR SELF-SUPERVISED DEEP SPEAKER REPRESENTATION LEARNING
    Cai, Danwei
    Wang, Weiqing
    Li, Ming
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6728 - 6732
  • [44] Self-supervised video representation learning by maximizing mutual information
    Xue, Fei
    Ji, Hongbing
    Zhang, Wenbo
    Cao, Yi
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 88
  • [45] Self-supervised audiovisual representation learning for remote sensing data
    Heidler, Konrad
    Mou, Lichao
    Hu, Di
    Jin, Pu
    Li, Guangyao
    Gan, Chuang
    Wen, Ji-Rong
    Zhu, Xiao Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
  • [46] Contrastive Self-supervised Representation Learning Using Synthetic Data
    She, Dong-Yu
    Xu, Kun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (04) : 556 - 567
  • [47] Self-supervised learning with automatic data augmentation for enhancing representation
    Park, Chanjong
    Kim, Eunwoo
    PATTERN RECOGNITION LETTERS, 2024, 184 : 133 - 139
  • [48] Self-Supervised Visual Representation Learning via Residual Momentum
    Pham, Trung Xuan
    Niu, Axi
    Zhang, Kang
    Jin, Tee Joshua Tian
    Hong, Ji Woo
    Yoo, Chang D.
    IEEE ACCESS, 2023, 11 : 116706 - 116720
  • [49] Dense Semantic Contrast for Self-Supervised Visual Representation Learning
    Li, Xiaoni
    Zhou, Yu
    Zhang, Yifei
    Zhang, Aoting
    Wang, Wei
    Jiang, Ning
    Wu, Haiying
    Wang, Weiping
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1368 - 1376
  • [50] Augmentation Adversarial Training for Self-Supervised Speaker Representation Learning
    Kang, Jingu
    Huh, Jaesung
    Heo, Hee Soo
    Chung, Joon Son
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1253 - 1262