Combinatorial constructions of optimal optical orthogonal codes with weight 4

被引:97
作者
Chang, YX [1 ]
Fuji-Hara, R
Miao, Y
机构
[1] No Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Tsukuba, Inst Policy & Planning Sci, Tsukuba, Ibaraki 3058573, Japan
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
combinatorial construction; cyclic t-difference packing; incomplete difference matrix (IDM); optical orthogonal code (OOC); optimal; skew starter; Weil's theorem;
D O I
10.1109/TIT.2003.810628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A (v, k, lambda) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following correlation properties: Sigma(0less than or equal totless than or equal tov-1) x(t)x(t+i) less than or equal to lambda for any x = (x(0),x(1),...,x(v-1))is an element ofC and any integer i not equivalent to 0 (mod v); Sigma(0less than or equal totless than or equal tov-1) x(t)y(t+i) less than or equal to lambda for any x = (x(0), x(1),...,x(v-1)) is an element of C, y = (y(0), y(1),..., y(v+1)) is an element of C with x not equal y, and any integer i, where the subscripts are taken modulo v. A (v, k, a) optical orthogonal code (OOC) with [1/k [v-1/k-1 [v-2/k-2 [(...) [v-lambda/k-lambda]]]]] codewords is said to be optimal. OOCs are essential for success of fiber-optic code-division multiple-access (CDMA) communication systems. The use of an optimal OOC enables the. largest possible number of asynchronous users to transmit information efficiently and reliably. In this paper, various combinatorial constructions for optimal (v, 4, 1) OOCs, such as those via skew starters and Weil's theorem on character sums, are given for v equivalent to 0 (mod 12). These improve the known existence results on optimal OOCs. In particular, it is shown that an optimal (v, 4, 1) OOC exists for any positive integer v equivalent to 0 (mod 24).
引用
收藏
页码:1283 / 1292
页数:10
相关论文
共 21 条
[1]   CONSTRUCTIONS FOR OPTIMAL CONSTANT WEIGHT CYCLICALLY PERMUTABLE CODES AND DIFFERENCE-FAMILIES [J].
BITAN, S ;
ETZION, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :77-87
[2]   Cyclic designs with block size 4 and related optimal optical orthogonal codes [J].
Buratti, M .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :111-125
[3]   Constructions for optimal optical orthogonal codes [J].
Chang, YX ;
Miao, Y .
DISCRETE MATHEMATICS, 2003, 261 (1-3) :127-139
[4]   Starters and related codes [J].
Chen, K ;
Ge, GN ;
Zhu, L .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 86 (02) :379-395
[5]   OPTICAL ORTHOGONAL CODES - DESIGN, ANALYSIS, AND APPLICATIONS [J].
CHUNG, FRK ;
SALEHI, JA ;
WEI, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :595-604
[6]  
CHUNG FRK, 1992, IEEE T INFORM THEORY, V38, P1429
[7]   RECURSIVE CONSTRUCTIONS FOR CYCLIC BLOCK-DESIGNS [J].
COLBOURN, MJ ;
COLBOURN, CJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1984, 10 (01) :97-103
[8]   Optical orthogonal codes: Their bounds and new optimal constructions [J].
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2396-2406
[9]   Optimal ( 9v, 4, 1) optical orthogonal codes [J].
Fuji-Hara, R ;
Miao, Y ;
Yin, JX .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (02) :256-266
[10]   Constructions for optimal (v, 4, 1) optical orthogonal codes [J].
Ge, GN ;
Yin, JX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2998-3004