Compressed-sensing wavenumber-scanning interferometry

被引:10
作者
Bai, Yulei [1 ]
Zhou, Yanzhou [1 ]
He, Zhaoshui [1 ]
Ye, Shuangli [2 ]
Dong, Bo [1 ]
Xie, Shengli [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Interferometry; Fringe analysis; Transform; Compressed-sensing; DEPTH RESOLUTION; ALGORITHM; DECOMPOSITION; IMPROVEMENT; PHASE;
D O I
10.1016/j.optlastec.2017.08.003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:229 / 233
页数:5
相关论文
共 16 条
[1]   Eigenvalue decomposition and least squares algorithm for depth resolution of wavenumber-scanning interferometry [J].
Bai, Yulei ;
He, Yanmin ;
Bao, Hong ;
Zhang, Yun ;
Ye, Shuangli ;
Zhou, Yanzhou .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (07) :1352-1356
[2]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[3]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[4]   Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry [J].
Chakraborty, Semanti ;
Ruiz, Pablo D. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2012, 29 (09) :1776-1785
[5]   Wavelength scanning interferometry using multiple light sources [J].
Davila, A. .
OPTICS EXPRESS, 2016, 24 (05) :5311-5322
[6]   Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range [J].
Davila, A. ;
Huntley, J. M. ;
Pallikarakis, C. ;
Ruiz, P. D. ;
Coupland, J. M. .
OPTICS AND LASERS IN ENGINEERING, 2012, 50 (08) :1089-1096
[7]   Fourier-transform phase-shifting interferometry [J].
Deck, LL .
APPLIED OPTICS, 2003, 42 (13) :2354-2365
[8]   Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry [J].
Kitagawa, Katsuichi .
OPTICS LETTERS, 2014, 39 (14) :4172-4175
[9]   A SAR image compression algorithm based on Mallat tower-type wavelet decomposition [J].
Li, Jia ;
Chang, Liping .
OPTIK, 2015, 126 (23) :3982-3986
[10]   An image feature point matching algorithm based on fixed scale feature transformation [J].
Li, Jia .
OPTIK, 2013, 124 (13) :1620-1623