On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems

被引:40
作者
Castro Diaz, M. J.
Chacon Rebollo, T.
Fernandez-Nieto, E. D.
Pares, Carlos
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Seville, Dept Ecuaciones Diferenciales & Anal Numer, E-41080 Seville, Spain
[3] Univ Seville, Dept Matemat Aplicada 1, E-41012 Seville, Spain
关键词
well-balanced finite volume method; upwinding; shallow water; source terms; two-layer flows;
D O I
10.1137/040607642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce a general family of finite volume methods for nonhomogeneous hyperbolic systems with nonconservative terms. We prove that all of them are "asymptotically well-balanced": they preserve all smooth stationary solutions in all the domain except for a set whose measure tends to zero as Delta x tends to zero. This theory is applied to solve the bilayer shallow-water equations with arbitrary cross-section. Finally, some numerical tests are presented for simplified but meaningful geometries, comparing the computed solution with approximated asymptotic analytical solutions.
引用
收藏
页码:1093 / 1126
页数:34
相关论文
共 21 条
[1]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[2]   A Q-scheme for a class of systems of coupled conservation laws with source term.: Application to a two-layer 1-D shallow water system [J].
Castro, M ;
Macías, J ;
Parés, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01) :107-127
[3]   Numerical simulation of two-layer shallow water flows through channels with irregular geometry [J].
Castro, MJ ;
García-Rodríguez, JA ;
González-Vida, JM ;
Macías, J ;
Parés, C ;
Vázquez-Cendón, ME .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) :202-235
[4]  
CASTRO MJ, 2001, P ECCOMAS 2001 SWAN, P241
[5]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[6]   MAXIMAL 2-LAYER EXCHANGE OVER A SILL AND THROUGH THE COMBINATION OF A SILL AND CONTRACTION WITH BAROTROPIC FLOW [J].
FARMER, DM ;
ARMI, L .
JOURNAL OF FLUID MECHANICS, 1986, 164 :53-+
[7]  
FERNANDEZ ED, 2003, THESIS U SEVILLA SPA
[8]  
FOWLER AC, 1997, MATH MODEL APPL SCI
[9]  
Godlewski E., 1996, NUMERICAL APPROXIMAT
[10]   A well-balanced scheme for the numerical processing of source terms in hyperbolic equations [J].
Greenberg, JM ;
Leroux, AY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :1-16