PERTURBATION ANALYSIS FOR PALINDROMIC AND ANTI-PALINDROMIC NONLINEAR EIGENVALUE PROBLEMS

被引:4
|
作者
Ahmad, Sk Safique [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Indore 453552, Madhya Pradesh, India
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2019年 / 51卷
关键词
nonlinear eigenvalue problem; even and odd matrix polynomials; palindromic matrix polynomial; BACKWARD ERRORS; MATRIX; PSEUDOSPECTRA; LINEARIZATIONS; EVEN;
D O I
10.1553/etna_vol51s151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T-palindromic, H-palindromic, T-anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [41] AVOIDING DISCRETIZATION ISSUES FOR NONLINEAR EIGENVALUE PROBLEMS
    Colbrook, Matthew j.
    Townsend, Alex
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2025, 46 (01) : 648 - 675
  • [42] Transition between nonlinear and linear eigenvalue problems
    Jiang, Guosheng
    Liu, Yongjie
    Liu, Zhaoli
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 10919 - 10936
  • [43] A RIEMANNIAN NEWTON ALGORITHM FOR NONLINEAR EIGENVALUE PROBLEMS
    Zhao, Zhi
    Bai, Zheng-Jian
    Jin, Xiao-Qing
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 752 - 774
  • [44] New Algorithms for Solving Nonlinear Eigenvalue Problems
    Gander, W.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (05) : 761 - 773
  • [45] A full multigrid method for nonlinear eigenvalue problems
    JIA ShangHui
    XIE HeHu
    XIE ManTing
    XU Fei
    ScienceChina(Mathematics), 2016, 59 (10) : 2037 - 2048
  • [46] New Algorithms for Solving Nonlinear Eigenvalue Problems
    W. Gander
    Computational Mathematics and Mathematical Physics, 2021, 61 : 761 - 773
  • [47] Multiple nontrivial solutions for nonlinear eigenvalue problems
    Motreanu, D.
    Motreanu, V. V.
    Papageorgiou, N. S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (11) : 3649 - 3658
  • [48] COMPACT TWO-SIDED KRYLOV METHODS FOR NONLINEAR EIGENVALUE PROBLEMS
    Lietaert, Pieter
    Meerbergen, Karl
    Tisseur, Francoise
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A2801 - A2829
  • [49] AN ITERATIVE METHOD FOR COMPUTING THE PSEUDOSPECTRAL ABSCISSA FOR A CLASS OF NONLINEAR EIGENVALUE PROBLEMS
    Michiels, Wim
    Guglielmi, Nicola
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2366 - A2393
  • [50] Computing the distance to instability for large-scale nonlinear eigenvalue problems
    Michiels, Wim
    Guglielmi, Nicola
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3670 - 3675