PERTURBATION ANALYSIS FOR PALINDROMIC AND ANTI-PALINDROMIC NONLINEAR EIGENVALUE PROBLEMS

被引:4
|
作者
Ahmad, Sk Safique [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Indore 453552, Madhya Pradesh, India
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2019年 / 51卷
关键词
nonlinear eigenvalue problem; even and odd matrix polynomials; palindromic matrix polynomial; BACKWARD ERRORS; MATRIX; PSEUDOSPECTRA; LINEARIZATIONS; EVEN;
D O I
10.1553/etna_vol51s151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T-palindromic, H-palindromic, T-anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [31] A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems
    Garrett, C. Kristopher
    Bai, Zhaojun
    Li, Ren-Cang
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2016, 43 (01):
  • [32] Pseudospectra Analysis, Nonlinear Eigenvalue Problems, and Studying Linear Systems with Delays
    J. K. Cullum
    A. E. Ruehli
    BIT Numerical Mathematics, 2001, 41 : 265 - 281
  • [33] Pseudospectra analysis, nonlinear eigenvalue problems, and studying linear systems with delays
    Cullum, JK
    Ruehli, AE
    BIT NUMERICAL MATHEMATICS, 2001, 41 (02) : 265 - 281
  • [34] Perturbation Formulas for a Nonlinear Eigenvalue Problem for Ordinary Differential Equations
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (06) : 858 - 862
  • [35] Perturbation Formulas for a Nonlinear Eigenvalue Problem for Ordinary Differential Equations
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2018, 58 : 858 - 862
  • [36] A full multigrid method for nonlinear eigenvalue problems
    Jia, ShangHui
    Xie, HeHu
    Xie, ManTing
    Xu, Fei
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 2037 - 2048
  • [37] ROBUST RATIONAL APPROXIMATIONS OF NONLINEAR EIGENVALUE PROBLEMS
    Guttel, Stefan
    Porzio, Gian Maria Negri
    Tisseur, Francoise
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2439 - A2463
  • [38] A SURVEY ON VARIATIONAL CHARACTERIZATIONS FOR NONLINEAR EIGENVALUE PROBLEMS
    Lampe, Jorg
    Voss, Heinrich
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 1 - 75
  • [39] ON THE NUMERICAL-SOLUTION OF NONLINEAR EIGENVALUE PROBLEMS
    ANDREW, AL
    CHU, KE
    LANCASTER, P
    COMPUTING, 1995, 55 (02) : 91 - 111
  • [40] A full multigrid method for nonlinear eigenvalue problems
    ShangHui Jia
    HeHu Xie
    ManTing Xie
    Fei Xu
    Science China Mathematics, 2016, 59 : 2037 - 2048