PERTURBATION ANALYSIS FOR PALINDROMIC AND ANTI-PALINDROMIC NONLINEAR EIGENVALUE PROBLEMS

被引:4
|
作者
Ahmad, Sk Safique [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Indore 453552, Madhya Pradesh, India
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2019年 / 51卷
关键词
nonlinear eigenvalue problem; even and odd matrix polynomials; palindromic matrix polynomial; BACKWARD ERRORS; MATRIX; PSEUDOSPECTRA; LINEARIZATIONS; EVEN;
D O I
10.1553/etna_vol51s151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T-palindromic, H-palindromic, T-anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [21] An Arnoldi method for nonlinear eigenvalue problems
    Voss, H
    BIT NUMERICAL MATHEMATICS, 2004, 44 (02) : 387 - 401
  • [22] An Arnoldi Method for Nonlinear Eigenvalue Problems
    H. Voss
    BIT Numerical Mathematics, 2004, 44 : 387 - 401
  • [23] Nonlinear eigenvalue problems for even functionals
    Maad, Sara
    APPLICABLE ANALYSIS, 2007, 86 (07) : 829 - 849
  • [24] A remark on a class of nonlinear eigenvalue problems
    Ricceri, Biagio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 2964 - 2967
  • [25] Structured pseudospectra for nonlinear eigenvalue problems
    Wagenknecht, T.
    Michiels, W.
    Green, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (02) : 245 - 259
  • [26] Localization Theorems for Nonlinear Eigenvalue Problems
    Bindel, David
    Hood, Amanda
    SIAM REVIEW, 2015, 57 (04) : 585 - 607
  • [27] RANDOMIZED SKETCHING OF NONLINEAR EIGENVALUE PROBLEMS
    Guttel, Stefan
    Kressner, Daniel
    Vandereycken, Bart
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05): : A3022 - A3043
  • [28] Chebyshev interpolation for nonlinear eigenvalue problems
    Cedric Effenberger
    Daniel Kressner
    BIT Numerical Mathematics, 2012, 52 : 933 - 951
  • [29] LOCALIZATION THEOREMS FOR NONLINEAR EIGENVALUE PROBLEMS
    Bindel, David
    Hood, Amanda
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1728 - 1749
  • [30] FEAST eigensolver for nonlinear eigenvalue problems
    Gavin, Brendan
    Miedlar, Agnieszka
    Polizzi, Eric
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 27 : 107 - 117