PERTURBATION ANALYSIS FOR PALINDROMIC AND ANTI-PALINDROMIC NONLINEAR EIGENVALUE PROBLEMS

被引:4
|
作者
Ahmad, Sk Safique [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Math, Indore 453552, Madhya Pradesh, India
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2019年 / 51卷
关键词
nonlinear eigenvalue problem; even and odd matrix polynomials; palindromic matrix polynomial; BACKWARD ERRORS; MATRIX; PSEUDOSPECTRA; LINEARIZATIONS; EVEN;
D O I
10.1553/etna_vol51s151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T-palindromic, H-palindromic, T-anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [1] PALINDROMIC EIGENVALUE PROBLEMS: A BRIEF SURVEY
    Chu, Eric King-wah
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Wu, Chin-Tien
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (3A): : 743 - 779
  • [2] Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form
    Mackey, D. Steven
    Mackey, Niloufer
    Mehl, Christian
    Mehrmann, Volker
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (01) : 63 - 86
  • [3] Pole-Swapping Algorithms for Alternating and Palindromic Eigenvalue Problems
    Mach, Thomas
    Steel, Thijs
    Vandebril, Raf
    Watkins, David S.
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 679 - 701
  • [4] STRUCTURED EIGENVALUE BACKWARD ERRORS OF MATRIX PENCILS AND POLYNOMIALS WITH PALINDROMIC STRUCTURES
    Bora, Shreemayee
    Karow, Michael
    Mehl, Christian
    Sharma, Punit
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 393 - 416
  • [5] Perturbation effects in nonlinear eigenvalue problems
    Radulescu, Vicentiu
    Repovs, Dusan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 3030 - 3038
  • [6] The palindromic generalized eigenvalue problem A*x = λAx: Numerical solution and applications
    Li, Tiexiang
    Chiang, Chun-Yueh
    Chu, Eric King-wah
    Lin, Wen-Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (11) : 2269 - 2284
  • [7] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [8] On the inverse eigenvalue problem for T-alternating and T-palindromic matrix polynomials
    Batzke, Leonhard
    Mehl, Christian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 452 : 172 - 191
  • [9] Numerical Analysis of Nonlinear Eigenvalue Problems
    Cances, Eric
    Chakir, Rachida
    Maday, Yvon
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 90 - 117
  • [10] Numerical Analysis of Nonlinear Eigenvalue Problems
    Eric Cancès
    Rachida Chakir
    Yvon Maday
    Journal of Scientific Computing, 2010, 45 : 90 - 117