3D-Printable Dielectric Transmitarray With Enhanced Bandwidth at Millimeter-Waves

被引:62
作者
Massaccesi, Andrea [1 ]
Pirinoli, Paola [1 ]
Bertana, Valentina [2 ]
Scord, Giorgio [2 ]
Marasso, Simone Luigi [3 ]
Cocuzza, Matteo [3 ]
Dassano, Gianluca [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
[2] Politecn Torino, Dept Appl Sci & Technol, Chilab Mat & Microsyst Lab, I-10129 Turin, Italy
[3] IMEM CNR, I-43124 Parma, Italy
关键词
Wideband antenna; transmitarray antenna; planar lens; discrete lens; tapered matching; 3D-printed antenna; 3D-printing; BAND; LENS; ANTENNA;
D O I
10.1109/ACCESS.2018.2865353
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a three-layer dielectric structure is presented as innovative unit-cell element for transmitarray (TA) antennas with enhanced bandwidth. It consists of a central layer, with a varying size square hole, used to compensate the phase of the incident field and located between two other identical layers with linearly tapered square holes, acting as matching circuits. The effectiveness of this unit-cell is demonstrated by the numerical and the experimental results here presented. As a first step, three different TAs with increasing size are designed and simulated: their 1-dB gain bandwidth, centered at 30 GHz, varies from the 30.9% of the smallest configuration, having size of 10 lambda(0) x 10 lambda(0), to the 17.5% of the 20 lambda(0) x 20 lambda(0) TA. A slightly modified unit-cell is then designed, with the aim of realizing a prototype with an additive manufacturing (AM) technique. A 3D-printed dielectric TA with a size of 15.6 lambda(0) x 15.6 lambda(0) has been manufactured and experimentally characterized. The measured prototype shows excellent performances, achieving a 1-dB gain bandwidth of 21.5%: these results prove the enhanced features of the introduced unit-cell and demonstrate the TA feasibility with AM techniques.
引用
收藏
页码:46407 / 46418
页数:12
相关论文
共 22 条
[1]  
Abdelrahman AH, 2017, Analysis and Design of Transmitarray Antennas
[2]   Bandwidth Improvement Methods of Transmitarray Antennas [J].
Abdelrahman, Ahmed H. ;
Nayeri, Payam ;
Elsherbeni, Atef Z. ;
Yang, Fan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) :2946-2954
[3]   High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements [J].
Abdelrahman, Ahmed H. ;
Elsherbeni, Atef Z. ;
Yang, Fan .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :1288-1291
[4]   Discrete Dielectric Reflectarray and Lens for E-Band With Different Feed [J].
Al-Nuaimi, Mustafa K. Taher ;
Hong, Wei .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :947-950
[5]   A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias [J].
An, Wenxing ;
Xu, Shenheng ;
Yang, Fan ;
Li, Maokun .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (03) :1120-+
[6]   3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications [J].
Bertana, Valentina ;
Potrich, Cristina ;
Scordo, Giorgio ;
Scaltrito, Luciano ;
Ferrero, Sergio ;
Lamberti, Andrea ;
Perrucci, Francesco ;
Pirri, Candido Fabrizio ;
Pederzolli, Cecilia ;
Cocuzza, Matteo ;
Marasso, Simone Luigi .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2018, 36 (01)
[7]  
Collin R. E., 1992, Foundations for Microwave Engineering, V2nd ed
[8]  
Dal Vecchio M, 2017, INT J APPL ENG RES, V12, P6751
[9]   Development of 3D printable formulations containing CNT with enhanced electrical properties [J].
Gonzalez, Gustavo ;
Chiappone, Annalisa ;
Roppolo, Ignazio ;
Fantino, Erika ;
Bertana, Valentina ;
Perrucci, Francesco ;
Scaltrito, Luciano ;
Pirri, Fabrizio ;
Sangermano, Marco .
POLYMER, 2017, 109 :246-253
[10]   Wideband Linearly Polarized Transmitarray Antenna for 60 GHz Backhauling [J].
Jouanlanne, Cyril ;
Clemente, Antonio ;
Huchard, Mathieu ;
Keignart, Julien ;
Barbier, Cyril ;
Le Nadan, Thierry ;
Petit, Laurent .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) :1440-1445