On Generalized Energy Inequality of the Damped Navier-Stokes Equations with Navier Slip Boundary Conditions

被引:0
作者
Pal, Subha [1 ]
Chutia, Duranta [2 ]
机构
[1] Tezpur Univ, Tezpur 784028, Assam, India
[2] Dibru Coll, Dibrugarh 786003, Assam, India
来源
MATHEMATICS AND COMPUTING, ICMC 2022 | 2022年 / 415卷
关键词
Navier-Stokes equation; Damping; Rothe method; Navier slip boundary condition; WEAK SOLUTIONS; ATTRACTORS; REGULARITY; UNIQUENESS;
D O I
10.1007/978-981-19-9307-7_38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we deal with a damped Navier-Stokes equations in IR3 with slip boundary conditions. Sufficient conditions for the existence of the solutions to the Navier-Stokes system are established in a bounded domain Omega subset of IR3. Further, we show that the solutions derived by Rothe's method are satisfying the local energy inequality.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
[31]   Uniqueness and Bifurcation Branches for Planar Steady Navier-Stokes Equations Under Navier Boundary Conditions [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Koch, Hans .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (03)
[32]   FRACTIONAL NAVIER-STOKES EQUATIONS [J].
Cholewa, Jan W. ;
Dlotko, Tomasz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08) :2967-2988
[33]   Stabilization of Navier-Stokes equations by boundary feedback [J].
Ravindran, S. S. .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2007, 4 (3-4) :608-624
[34]   Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations [J].
Berselli, LC .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (13) :1079-1085
[35]   Parallel iterative stabilized finite element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions [J].
Zhou, Kangrui ;
Shang, Yueqiang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) :1074-1109
[36]   The Navier-Stokes-Voigt equations with position-dependent slip boundary conditions [J].
Baranovskii, Evgenii S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01)
[37]   Parallel iterative finite-element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions [J].
Zhou, Kangrui ;
Shang, Yueqiang .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (05) :509-530
[38]   Global strong solutions of two-dimensional Navier-Stokes equations with nonlinear slip boundary conditions [J].
Li, Yuan ;
Li, Kaitai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :1-13
[39]   NAVIER-STOKES SYSTEM ON THE FLAT CYLINDER AND UNIT SQUARE WITH SLIP BOUNDARY CONDITIONS [J].
Dinaburg, Efim ;
Li, Dong ;
Sinai, Yakov G. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (02) :325-349
[40]   INVISCID LIMIT FOR THE DAMPED GENERALIZED INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON T2 [J].
Liu, Yang ;
Sun, Chunyou .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12) :4383-4408