THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM

被引:262
作者
Heitmann, Katrin [1 ]
White, Martin [2 ,3 ]
Wagner, Christian [4 ]
Habib, Salman [5 ]
Higdon, David [6 ]
机构
[1] Los Alamos Natl Lab, ISR Div, ISR 1, Los Alamos, NM 87545 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[4] AIP, D-14482 Potsdam, Germany
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, CCS Div, CCS 6, Los Alamos, NM 87545 USA
关键词
large-scale structure of universe; methods: numerical; BARYON ACOUSTIC-OSCILLATIONS; DARK-ENERGY CONSTRAINTS; PERTURBATION-THEORY; INITIAL CONDITIONS; CMB ANISOTROPIES; COSMIC SHEAR; SIMULATIONS; EVOLUTION; TRANSIENTS; MODELS;
D O I
10.1088/0004-637X/715/1/104
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise the only viable approach to this problem. In this paper, we study various sources of computational error and methods to control them. By applying our methodology to a large suite of cosmological simulations we show that results for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k similar to 1 h Mpc(-1). The key components of these high accuracy simulations are precise initial conditions, very large simulation volumes, sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae by an order of magnitude.
引用
收藏
页码:104 / 121
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 1999, Cosmological Physics
[2]  
BAUGH CM, 1995, MON NOT R ASTRON SOC, V274, P1049
[3]   Cosmological constraints from the 100-deg2 weak-lensing survey [J].
Benjamin, Jonathan ;
Heymans, Catherine ;
Semboloni, Elisabetta ;
Van Waerbeke, Ludovic ;
Hoekstra, Henk ;
Erben, Thomas ;
Gladders, Michael D. ;
Hetterscheidt, Marco ;
Mellier, Yannick ;
Yee, H. K. C. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 381 (02) :702-712
[4]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[5]  
BOUCHET FR, 1995, ASTRON ASTROPHYS, V296, P575
[6]   Critical look at cosmological perturbation theory techniques [J].
Carlson, Jordan ;
White, Martin ;
Padmanabhan, Nikhil .
PHYSICAL REVIEW D, 2009, 80 (04)
[7]   THE COSMOLOGICAL CONSTANT [J].
CARROLL, SM ;
PRESS, WH ;
TURNER, EL .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1992, 30 :499-542
[8]   Accurate estimators of power spectra in N-body simulations [J].
Colombi, Stephane ;
Jaffe, Andrew ;
Novikov, Dmitri ;
Pichon, Christophe .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (02) :511-526
[9]   Halo models of large scale structure [J].
Cooray, A ;
Sheth, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 372 (01) :1-129
[10]   Transients from initial conditions in cosmological simulations [J].
Crocce, Martin ;
Pueblas, Sebastian ;
Scoccimarro, Roman .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 373 (01) :369-381