Closed-Form MMSE Estimation for Signal Denoising Under Sparse Representation Modeling Over a Unitary Dictionary

被引:63
作者
Protter, Matan [1 ]
Yavneh, Irad [1 ]
Elad, Michael [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Maximum a posteriori probability (MAP); minimum mean squared error (MMSE); sparse representations; unitary dictionary; WAVELET; SHRINKAGE;
D O I
10.1109/TSP.2010.2046596
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the Bayesian signal denoising problem, assuming a prior based on a sparse representation modeling over a unitary dictionary. It is well known that the maximum a posteriori probability (MAP) estimator in such a case has a closed-form solution based on a simple shrinkage. The focus in this paper is on the better performing and less familiar minimum-mean-squared-error (MMSE) estimator. We show that this estimator also leads to a simple formula, in the form of a plain recursive expression for evaluating the contribution of every atom in the solution. An extension of the model to real-world signals is also offered, considering heteroscedastic nonzero entries in the representation, and allowing varying probabilities for the chosen atoms and the overall cardinality of the sparse representation. The MAP and MMSE estimators are redeveloped for this extended model, again resulting in closed-form simple algorithms. Finally, the superiority of the MMSE estimator is demonstrated both on synthetically generated signals and on real-world signals (image patches).
引用
收藏
页码:3471 / 3484
页数:14
相关论文
共 30 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]   On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (01) :48-67
[3]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[4]  
[Anonymous], EUR SIGN PROC C EUSI
[5]  
[Anonymous], 1993, 27 AS C SIGN SYST CO
[6]   Regularization of wavelet approximations - Rejoinder [J].
Antoniadis, A ;
Fan, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :964-967
[7]  
Antoniadis A., 2001, Journal of Statistical Software, V6
[8]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[9]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[10]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]