On the Dynamics of the Chaotic General Lorenz System

被引:11
作者
Zhang, Fuchen [1 ]
Liao, Xiaofeng [2 ]
Chen, Yi-An [1 ]
Mu, Chunlai [3 ]
Zhang, Guangyun [1 ]
机构
[1] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
[2] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400716, Peoples R China
[3] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2017年 / 27卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
General Lorenz system; Lyapunov stability theory; optimization theory; global attractive set; HOMOCLINIC TRAJECTORIES; SHIMIZU-MORIOKA; ATTRACTOR; EXISTENCE; CHEN; LU; BOUNDEDNESS; ORBITS; BOUNDS;
D O I
10.1142/S0218127417500754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the global attractive sets of the general Lorenz system are studied based on the Lyapunov stability theory and optimization theory. The innovation of this paper lies in that the method of constructing Lyapunov functions applied to many other dynamical systems is not applicable to this general Lorenz system. Comparing with the best results in the current literature, our new results fill the gap of the estimate for the case of a > 0, c > 0, b > 1.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[2]   New method to obtain periodic solutions of period two and three of a rational difference equation [J].
Elsayed, E. .
NONLINEAR DYNAMICS, 2015, 79 (01) :241-250
[3]   Solutions of rational difference systems of order two [J].
Elsayed, E. M. .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :378-384
[4]   Solution and Attractivity for a Rational Recursive Sequence [J].
Elsayed, E. M. .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
[5]   Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor [J].
Kuznetsov, N. V. ;
Mokaev, T. N. ;
Vasilyev, P. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (04) :1027-1034
[6]   On differences and similarities in the analysis of Lorenz, Chen, and Lu systems [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :334-343
[7]   Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system [J].
Leonov, G. A. .
PHYSICS LETTERS A, 2015, 379 (06) :524-528
[8]   Criteria for the existence of homoclinic orbits of systems Lu and Chen [J].
Leonov, G. A. .
DOKLADY MATHEMATICS, 2013, 87 (02) :220-223
[9]   The tricomi problem for the Shimizu-Morioka dynamical system [J].
Leonov, G. A. .
DOKLADY MATHEMATICS, 2012, 86 (03) :850-853
[10]   General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems [J].
Leonov, G. A. .
PHYSICS LETTERS A, 2012, 376 (45) :3045-3050