Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket

被引:8
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
analysis on fractals; Schrodinger operators; Sierpinski gasket;
D O I
10.1090/S0002-9939-07-09008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 50 条
[41]   Harmonic Sierpinski Gasket and Applications [J].
Guariglia, Emanuel .
ENTROPY, 2018, 20 (09)
[42]   Fractal interpolation on the Sierpinski Gasket [J].
Celik, Derya ;
Kocak, Sahin ;
Ozdemir, Yunus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :343-347
[43]   Spanning forests on the Sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi .
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02) :55-76
[44]   On the packing measure of the Sierpinski gasket [J].
Llorente, Marta ;
Eugenia Mera, M. ;
Moran, Manuel .
NONLINEARITY, 2018, 31 (06) :2571-2589
[45]   OPTIMIZATION PROBLEMS ON THE SIERPINSKI GASKET [J].
Galewski, Marek .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[46]   Extensions and their Minimizations on the Sierpinski Gasket [J].
Li, Pak-Hin ;
Ryder, Nicholas ;
Strichartz, Robert S. ;
Ugurcan, Baris Evren .
POTENTIAL ANALYSIS, 2014, 41 (04) :1167-1201
[47]   Box dimension of harmonic functions on higher dimensional Sierpinski gasket and Sierpinski gasket with bilateral energy [J].
Gopalakrishnan, Harsha ;
Prasad, Srijanani Anurag .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
[48]   Integrated density of states for Poisson-Schrodinger perturbations of subordinate Brownian motions on the Sierpinski gasket [J].
Kaleta, Kamil ;
Pietruska-Paluba, Katarzyna .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (04) :1244-1281
[49]   Derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments [J].
Demir, Bunyamin ;
Dzhafarov, Vakif ;
Kocak, Sahin ;
Ureyen, Mehmet .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :817-822
[50]   MAGNETIC LAPLACIANS OF LOCALLY EXACT FORMS ON THE SIERPINSKI GASKET [J].
Hyde, Jessica ;
Kelleher, Daniel ;
Moeller, Jesse ;
Rogers, Luke ;
Seda, Luis .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) :2299-2319