Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket

被引:8
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
analysis on fractals; Schrodinger operators; Sierpinski gasket;
D O I
10.1090/S0002-9939-07-09008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 50 条
[31]   AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS [J].
Wang, Songjing ;
Yu, Zhouyu ;
Xi, Lifeng .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
[32]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Okoudjou, Kasso A. ;
Strichartz, Robert S. ;
Tuley, Elizabeth K. .
CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) :311-340
[33]   Hausdorff measure of Sierpinski gasket [J].
Zhou, ZL .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10) :1016-1021
[34]   ACYCLIC ORIENTATIONS ON THE SIERPINSKI GASKET [J].
Chang, Shu-Chiuan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (24)
[35]   Extensions and their Minimizations on the Sierpinski Gasket [J].
Pak-Hin Li ;
Nicholas Ryder ;
Robert S. Strichartz ;
Baris Evren Ugurcan .
Potential Analysis, 2014, 41 :1167-1201
[36]   Hausdorff measure of Sierpinski gasket [J].
Zuoling Zhou .
Science in China Series A: Mathematics, 1997, 40 :1016-1021
[37]   Nonlinear problems on the Sierpinski gasket [J].
Bisci, Giovanni Molica ;
Repovs, Dusan ;
Servadei, Raffaella .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) :883-895
[38]   Dimer Coverings on the Sierpinski Gasket [J].
Shu-Chiuan Chang ;
Lung-Chi Chen .
Journal of Statistical Physics, 2008, 131 :631-650
[39]   Maximum density for the Sierpinski gasket [J].
Zhou, Ji ;
Luo, Mao-Kang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) :597-603
[40]   Spanning Trees on the Sierpinski Gasket [J].
Shu-Chiuan Chang ;
Lung-Chi Chen ;
Wei-Shih Yang .
Journal of Statistical Physics, 2007, 126 :649-667