Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket

被引:8
作者
Okoudjou, Kasso A. [1 ]
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
analysis on fractals; Schrodinger operators; Sierpinski gasket;
D O I
10.1090/S0002-9939-07-09008-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
引用
收藏
页码:2453 / 2459
页数:7
相关论文
共 50 条
[21]   Resonance asymptotics for Schrodinger operators on hyperbolic space [J].
Borthwick, David ;
Crompton, Catherine .
JOURNAL OF SPECTRAL THEORY, 2014, 4 (03) :515-567
[22]   Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets [J].
Lapidus, Michel L. ;
Sarhad, Jonathan J. .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (04) :947-985
[23]   Numerical analysis on the Sierpinski gasket, with applications to Schrodinger equations, wave equation, and Gibbs' phenomenon [J].
Coletta, K ;
Dias, K ;
Strichartz, RS .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (04) :413-449
[24]   Dimer coverings on the sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) :631-650
[25]   BOUNDED VARIATION ON THE SIERPINSKI GASKET [J].
Verma, S. ;
Sahu, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
[26]   ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK [J].
Chen, Jin ;
He, Long ;
Wang, Qin .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
[27]   Critical potentials of the eigenvalue ratios of Schrodinger operators [J].
Hou, Songbo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :524-528
[28]   Hausdorff measure of Sierpinski gasket [J].
周作领 .
Science China Mathematics, 1997, (10) :1016-1021
[29]   Spanning trees on the Sierpinski gasket [J].
Chang, Shu-Chiuan ;
Chen, Lung-Chi ;
Yang, Wei-Shih .
JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) :649-667
[30]   Orthogonal Polynomials on the Sierpinski Gasket [J].
Kasso A. Okoudjou ;
Robert S. Strichartz ;
Elizabeth K. Tuley .
Constructive Approximation, 2013, 37 :311-340