Deligne-Beilinson cohomology of the universal K3 surface

被引:0
作者
Li, Zhiyuan [1 ]
Zhang, Xun [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, 220 Handan Rd, Shanghai 200433, Peoples R China
[2] Fudan Univ, Math Dept, 220 Handan Rd, Shanghai 200433, Peoples R China
关键词
INTERSECTION THEORY; ALGEBRAIC STACKS; MODULI;
D O I
10.1017/fms.2022.60
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
O'Grady's generalised Franchetta conjecture (GFC) is concerned with codimension 2 algebraic cycles on universal polarised K3 surfaces. In [4], this conjecture has been studied in the Betti cohomology groups. Following a suggestion of Voisin, we investigate this problem in the Deligne-Beilinson (DB) cohomology groups. In this paper, we develop the theory of Deligne-Beilinson cohomology groups on (smooth) Deligne-Mumford stacks. Using the automorphic cohomology group and Noether-Lefschetz theory, we compute the 4th DB-cohomology group of universal oriented polarised K3 surfaces with at worst an A1 -singularity and show that GFC for such family holds in DB-cohomology. In particular, this confirms O'Grady's original conjecture in DB cohomology.
引用
收藏
页数:28
相关论文
共 42 条
  • [1] Beauville A, 2004, J ALGEBRAIC GEOM, V13, P417
  • [2] A remark on the generalized Franchetta conjecture for K3 surfaces
    Beauville, Arnaud
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (04) : 3337 - 3340
  • [3] Behrend K., 2004, Intersection theory and moduli, ICTP Lect. Notes, VXIX, P249
  • [4] Beilinson A., 1984, CURRENT PROBLEMS MAT, V24, P181
  • [5] TAUTOLOGICAL CLASSES ON MODULI SPACES OF HYPER-KAHLER MANIFOLDS
    Bergeron, Nicolas
    Li, Zhiyuan
    [J]. DUKE MATHEMATICAL JOURNAL, 2019, 168 (07) : 1179 - 1230
  • [6] Bloch S., 1986, CONTEMP MATH, V58, P65
  • [7] BURNS D, 1975, ANN SCI ECOLE NORM S, V8, P235
  • [8] Debarre O, 2020, Arxiv, DOI arXiv:1810.02087
  • [9] Deligne P., 1971, I HAUTES TUDES SCI P, V40, P5, DOI 10.1007/BF02684692
  • [10] Deligne P., 1968, PUBL MATH I HAUTES E, V35