Accuracy of the method of moments for scattering by a cylinder

被引:30
作者
Warnick, KF [1 ]
Chew, WC [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Ctr Computat Electromagnet, Urbana, IL 61801 USA
关键词
boundary integral equations; electromagnetic scattering; error analysis; moment methods; numerical analysis;
D O I
10.1109/22.873892
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the accuracy and convergence of the method of moments for numerical scattering computations for an important benchmark geometry: the infinite circular cylinder. From the spectral decomposition of the electric-field integral equation for this scatterer, we determine the condition number of the moment matrix and the dependence of solution error on the choice of basis functions, discretization density, polarization of the incident field, and the numerical quadrature rule used to evaluate moment-matrix elements. The analysis is carried out for both the TM polarization (weakly singular kernel) and TE polarization (hypersingular kernel). These results provide insights into empirical observations of the convergence behavior of numerical methods in computational electromagnetics.
引用
收藏
页码:1652 / 1660
页数:9
相关论文
共 20 条
[1]  
Amini S, 1998, INT J NUMER METH ENG, V41, P875, DOI 10.1002/(SICI)1097-0207(19980315)41:5<875::AID-NME313>3.0.CO
[2]  
2-9
[3]  
[Anonymous], ARCH RATIONAL MECH A
[4]  
[Anonymous], 1987, ELECTROMAGNETIC ACOU
[5]   A DIRECT BOUNDARY INTEGRAL-EQUATION METHOD FOR TRANSMISSION PROBLEMS [J].
COSTABEL, M ;
STEPHAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 106 (02) :367-413
[6]   Observations on the numerical stability of the Galerkin method [J].
Dallas, AG ;
Hsiao, GC ;
Kleinman, RE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) :37-67
[8]   Asymptotic and A posteriori error estimates for boundary element solutions of hypersingular integral equations [J].
Feistauer, M ;
Hsiao, GC ;
Kleinman, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :666-685
[9]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[10]   The hp-version of the boundary element method for Helmholtz screen problems [J].
Holm, H ;
Maischak, M ;
Stephan, EP .
COMPUTING, 1996, 57 (02) :105-134