Energy Theft Detection With Energy Privacy Preservation in the Smart Grid

被引:148
作者
Yao, Donghuan [1 ]
Wen, Mi [1 ]
Liang, Xiaohui [2 ]
Fu, Zipeng [3 ]
Zhang, Kai [1 ]
Yang, Baojia [4 ]
机构
[1] Shanghai Univ Elect Power, Coll Comp Sci & Technol, Shanghai 201101, Peoples R China
[2] Univ Massachusetts, Comp Sci Dept, Boston, MA 02125 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Microsoft, Dept Microsoft Suzhou Technol Ctr, Suzhou 215123, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Convolutional neural network (CNN); energy theft; privacy preserving; smart grid; STATE ESTIMATION;
D O I
10.1109/JIOT.2019.2903312
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a prominent early instance of the Internet of Things in the smart grid, the advanced metering infrastructure (AMI) provides real-time information from smart meters to both grid operators and customers, exploiting the full potential of demand response. However, the newly collected information without security protection can be maliciously altered and result in huge loss. In this paper, we propose an energy theft detection scheme with energy privacy preservation in the smart grid. Especially, we use combined convolutional neural networks (CNNs) to detect abnormal behavior of the metering data from a long-period pattern observation. In addition, we employ Paillier algorithm to protect the energy privacy. In other words, the users' energy data are securely protected in the transmission and the data disclosure is minimized. Our security analysis demonstrates that in our scheme data privacy and authentication are both achieved. Experimental results illustrate that our modified CNN model can effectively detect abnormal behaviors at an accuracy up to 92.67%.
引用
收藏
页码:7659 / 7669
页数:11
相关论文
共 40 条
[1]   Lightweight Security and Privacy Preserving Scheme for Smart Grid Customer-Side Networks [J].
Abdallah, Asmaa ;
Shen, Xuemin .
IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (03) :1064-1074
[2]  
Ahmad T., 2015, IJSER, V6, P217, DOI [10.14299/ijser.2015.03.001, DOI 10.14299/IJSER.2015.03.001]
[3]   GAME-THEORETIC MODELS OF ELECTRICITY THEFT DETECTION IN SMART UTILITY NETWORKS PROVIDING NEW CAPABILITIES WITH ADVANCED METERING INFRASTRUCTURE [J].
Amin, Saurabh ;
Schwartz, Galina A. ;
Cardenas, Alvaro A. ;
Sastry, S. Shankar .
IEEE CONTROL SYSTEMS MAGAZINE, 2015, 35 (01) :66-81
[4]  
Bao H., 2017, IEEE INTERNET THINGS, V2, P248
[5]  
Bottou L., 2012, LNCS
[6]  
Cárdenas AA, 2012, ANN ALLERTON CONF, P1830, DOI 10.1109/Allerton.2012.6483444
[7]  
Dahl GE, 2013, INT CONF ACOUST SPEE, P8609, DOI 10.1109/ICASSP.2013.6639346
[8]  
Dan B., 2001, P INT C THEOR APPL C, P1
[9]  
Depuru SSSR., 2011, POWER SYSTEMS C EXPO, P1
[10]  
Duplessis P., 2010, U.S. Patent Appl, Patent No. [12 093 693, 12093693]