Discrete Invasive Weed Optimization Algorithm for Traveling Salesman Problems
被引:0
|
作者:
Ouyang, Aijia
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R ChinaZunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R China
Ouyang, Aijia
[1
]
Peng, Xuyu
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Dept Comp Sci, Zunyi 563006, Guizhou, Peoples R ChinaZunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R China
Peng, Xuyu
[2
]
Wang, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R ChinaZunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R China
Wang, Qian
[1
]
Wang, Ya
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R ChinaZunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R China
Wang, Ya
[1
]
机构:
[1] Zunyi Normal Coll, Dept Informat Engn, Zunyi 563006, Guizhou, Peoples R China
[2] Zunyi Normal Coll, Dept Comp Sci, Zunyi 563006, Guizhou, Peoples R China
来源:
2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD)
|
2017年
基金:
中国国家自然科学基金;
关键词:
Traveling salesman problem TSP);
discrete invasive weed optimization algorithm;
multidirectional permutation sequence;
local optimization;
PARTICLE SWARM OPTIMIZATION;
PARAMETER-ESTIMATION;
NEURAL-NETWORK;
MODEL;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The paper proposes a discrete invasive weed optimization (DIWO) algorithm based on the application of this algorithm to the TSP, putting forward the global search strategy of the multidirectional permutation factor (MPF) and permutation sequence concept to generate offspring individuals, as well as to adjust the number of the permutation factors through nonlinear adaptive approach, thus it can effectively balance global exploration and local development; conducting local optimization to optimal individual, and obtaining better optimization results. The experimental data for measuring the algorithm performance, the DIWO algorithm can converge to the known optimal solution with small population scale and less iteration, and its efficiency is better than other traditional evolutionary algorithms.
机构:
Polytech Inst Porto ISEP IPP, Inst Engn, Porto, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Sequeiros, Jose A.
Silva, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Inst Porto ISEP IPP, Inst Engn, Porto, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Silva, Rui
Santos, Andre S.
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Inst Porto ISEP IPP, Inst Engn, Porto, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Santos, Andre S.
Bastos, J.
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Inst Porto ISEP IPP, Inst Engn, Porto, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Bastos, J.
Varela, M. L. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minho, Braga, Portugal
Algoritmi Res Ctr, Guimaraes, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Varela, M. L. R.
Madureira, A. M.
论文数: 0引用数: 0
h-index: 0
机构:
Polytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Interdisciplinary Studies Res Ctr ISRC, Porto, PortugalPolytech Inst Porto ISEP IPP, Inst Engn, Porto, Portugal
Madureira, A. M.
INNOVATIONS IN INDUSTRIAL ENGINEERING,
2022,
: 48
-
55