Primal-dual incremental gradient method for nonsmooth and convex optimization problems

被引:3
|
作者
Jalilzadeh, Afrooz [1 ]
机构
[1] Univ Arizona, Dept Syst & Ind Engn, 1127 E James Rogers Way, Tucson, AZ 85721 USA
关键词
Incremental gradient; Primal-dual method; Nonsmooth optimization; Convex optimization;
D O I
10.1007/s11590-021-01752-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a nonsmooth convex finite-sum problem with a conic constraint. To overcome the challenge of projecting onto the constraint set and computing the full (sub)gradient, we introduce a primal-dual incremental gradient scheme where only a component function and two constraints are used to update each primal-dual sub-iteration in a cyclic order. We demonstrate an asymptotic sublinear rate of convergence in terms of suboptimality and infeasibility which is an improvement over the state-of-the-art incremental gradient schemes in this setting. Numerical results suggest that the proposed scheme compares well with competitive methods.
引用
收藏
页码:2541 / 2554
页数:14
相关论文
共 50 条
  • [1] Primal-dual incremental gradient method for nonsmooth and convex optimization problems
    Afrooz Jalilzadeh
    Optimization Letters, 2021, 15 : 2541 - 2554
  • [2] Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
    Guminov, S. V.
    Nesterov, Yu. E.
    Dvurechensky, P. E.
    Gasnikov, A. V.
    DOKLADY MATHEMATICS, 2019, 99 (02) : 125 - 128
  • [3] Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems
    S. V. Guminov
    Yu. E. Nesterov
    P. E. Dvurechensky
    A. V. Gasnikov
    Doklady Mathematics, 2019, 99 : 125 - 128
  • [4] A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4061 - 4076
  • [5] A Universal Accelerated Primal-Dual Method for Convex Optimization Problems
    Luo, Hao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 280 - 312
  • [6] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504
  • [7] Primal-dual subgradient method for constrained convex optimization problems
    Michael R. Metel
    Akiko Takeda
    Optimization Letters, 2021, 15 : 1491 - 1504
  • [8] A second order primal-dual algorithm for nonsmooth convex composite optimization
    Dhingra, Neil K.
    Khong, Sei Zhen
    Jovanovic, Mihailo R.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [9] Projected Primal-Dual Dynamics for Distributed Constrained Nonsmooth Convex Optimization
    Zhu, Yanan
    Yu, Wenwu
    Wen, Guanghui
    Chen, Guanrong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1776 - 1782
  • [10] A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK FOR NONSMOOTH COMPOSITE CONVEX MINIMIZATION
    Quoc Tran-Dinh
    Fercoq, Olivier
    Cevher, Volkan
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (01) : 96 - 134