Primal-dual incremental gradient method for nonsmooth and convex optimization problems

被引:3
作者
Jalilzadeh, Afrooz [1 ]
机构
[1] Univ Arizona, Dept Syst & Ind Engn, 1127 E James Rogers Way, Tucson, AZ 85721 USA
关键词
Incremental gradient; Primal-dual method; Nonsmooth optimization; Convex optimization;
D O I
10.1007/s11590-021-01752-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a nonsmooth convex finite-sum problem with a conic constraint. To overcome the challenge of projecting onto the constraint set and computing the full (sub)gradient, we introduce a primal-dual incremental gradient scheme where only a component function and two constraints are used to update each primal-dual sub-iteration in a cyclic order. We demonstrate an asymptotic sublinear rate of convergence in terms of suboptimality and infeasibility which is an improvement over the state-of-the-art incremental gradient schemes in this setting. Numerical results suggest that the proposed scheme compares well with competitive methods.
引用
收藏
页码:2541 / 2554
页数:14
相关论文
共 22 条
  • [1] An Iterative Regularized Incremental Projected Subgradient Method for a Class of Bilevel Optimization Problems
    Amini, Mostafa
    Yousefian, Farzad
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4069 - 4074
  • [2] [Anonymous], 2015, ABS150803390 CORR
  • [3] Bauschke H.H., 1996, Projection algorithms and monotone operators
  • [4] Bertsekas DP, 2003, Convex Analysis and Optimization
  • [5] A convergent incremental gradient method with a constant step size
    Blatt, Doron
    Hero, Alfred O.
    Gauchman, Hillel
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (01) : 29 - 51
  • [6] STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT ALGORITHM WITH ARBITRARY SAMPLING AND IMAGING APPLICATIONS
    Chambolle, Antonin
    Ehrhardt, Matthias J.
    Richtarik, Peter
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 2783 - 2808
  • [7] CHEN SB, 1994, CONF REC ASILOMAR C, P41, DOI 10.1109/ACSSC.1994.471413
  • [8] Defazio Aaron., 2014, Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, P1646
  • [9] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [10] Algorithms for Fitting the Constrained Lasso
    Gaines, Brian R.
    Kim, Juhyun
    Zhou, Hua
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 861 - 871