Matrix product states for su(2) invariant quantum spin chains

被引:2
作者
Zadourian, Rubina [1 ]
Fledderjohann, Andreas [2 ]
Kluemper, Andreas [2 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany
关键词
density matrix renormalisation group; tensor network simulations; entanglement entropies; spin chains; ladders and planes; BOND GROUND-STATES; RENORMALIZATION-GROUP; XXZ MODEL; LADDERS; ANTIFERROMAGNETS; EQUIVALENCE; SYSTEMS;
D O I
10.1088/1742-5468/2016/08/083101
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
引用
收藏
页数:17
相关论文
共 56 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   CONFORMAL-INVARIANCE AND CRITICAL EXPONENTS OF THE TAKHTAJAN-BABUJIAN MODELS [J].
ALCARAZ, FC ;
MARTINS, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (23) :4397-4413
[4]  
[Anonymous], 2008, ARXIV08042509
[5]   Factorization of multiple integrals representing the density matrix of a finite segment of the Heisenberg spin chain [J].
Boos, HE ;
Gohmann, F ;
Klumper, A ;
Suzuki, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[6]   Dimerized and trimerized phases for spin-2 bosons in a one-dimensional optical lattice [J].
Chen, Pochung ;
Xue, Zhi-Long ;
McCulloch, I. P. ;
Chung, Ming-Chiang ;
Yip, S. -K. .
PHYSICAL REVIEW A, 2012, 85 (01)
[7]   String order and degenerate entanglement spectrum of S=1/2 and S=1 Heisenberg bond-alternating chains [J].
Deng, Xiao-Yan ;
Kong, Long-Juan ;
Qiang, Ling .
EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (10)
[8]   PREROUGHENING TRANSITIONS IN CRYSTAL-SURFACES AND VALENCE-BOND PHASES IN QUANTUM SPIN CHAINS [J].
DENNIJS, M ;
ROMMELSE, K .
PHYSICAL REVIEW B, 1989, 40 (07) :4709-4734
[9]   Nature of the Spin-Liquid Ground State of the S=1/2 Heisenberg Model on the Kagome Lattice [J].
Depenbrock, Stefan ;
McCulloch, Ian P. ;
Schollwoeck, Ulrich .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[10]   The density matrix renormalization group for finite Fermi systems [J].
Dukelsky, J ;
Pittel, S .
REPORTS ON PROGRESS IN PHYSICS, 2004, 67 (04) :513-552