Magnetic configuration effects on the Wendelstein 7-X stellarator

被引:138
作者
Dinklage, A. [1 ,2 ]
Beidler, C. D. [1 ]
Helander, P. [1 ,2 ]
Fuchert, G. [1 ]
Maassberg, H. [1 ]
Rahbarnia, K. [1 ]
Pedersen, T. Sunn [1 ,2 ]
Turkin, Y. [1 ]
Wolf, R. C. [1 ,3 ]
Alonso, A. [4 ]
Andreeva, T. [1 ]
Blackwell, B. [5 ]
Bozhenkov, S. [1 ]
Buttenschoen, B. [1 ]
Czarnecka, A. [6 ]
Effenberg, F. [7 ]
Feng, Y. [1 ]
Geiger, J. [1 ]
Hirsch, M. [1 ]
Hoefel, U. [1 ]
Jakubowski, M. [1 ]
Klinger, T. [1 ,2 ]
Knauer, J. [1 ]
Kocsis, G. [8 ]
Kraemer-Flecken, A. [9 ]
Kubkowska, M. [6 ]
Langenberg, A. [1 ]
Laqua, H. P. [1 ]
Marushchenko, N. [1 ]
Mollen, A. [1 ]
Neuner, U. [1 ]
Niemann, H. [1 ]
Pasch, E. [1 ]
Pablant, N. [10 ]
Rudischhauser, L. [1 ]
Smith, H. M. [1 ]
Schmitz, O. [7 ]
Stange, T. [1 ]
Szepesi, T. [8 ]
Weir, G. [1 ]
Windisch, T. [1 ]
Wurden, G. A. [11 ]
Zhang, D. [1 ]
Abramovic, I. [19 ]
Akaeslompolo, S. [1 ]
Ali, A. [1 ]
Alonso, A. [4 ]
Belloso, J. Alcuson [1 ]
Aleynikov, P. [1 ]
Aleynikova, K. [1 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] EM Arndt Univ Greifswald, Greifswald, Germany
[3] Tech Univ Berlin, Berlin, Germany
[4] CIEMAT, Madrid, Spain
[5] Australian Natl Univ, Canberra, ACT, Australia
[6] IPPLM, Warsaw, Poland
[7] Univ Wisconsin, Madison, WI USA
[8] Wigner RCP, Budapest, Hungary
[9] FZ Julich, Julich, Germany
[10] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[11] LANL, Los Alamos, NM USA
[12] Univ Maryland, College Pk, MD 20742 USA
[13] ERM, KMS, LPP, Brussels, Belgium
[14] Lithuanian Energy Inst, Kaunas, Lithuania
[15] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[16] Narodowe Centrum Badan Jadrowych, Natl Ctr Nucl Res Swierk, Otwock, Poland
[17] Karlsruhe Inst Technol, Eggenstein Leopoldshafe, Germany
[18] Max Planck Inst Plasma Phys, Garching, Germany
[19] Eindhoven Univ Technol, Eindhoven, Netherlands
[20] Univ Cagliari, Cagliari, Italy
[21] Consorzio RFX, Padua, Italy
[22] Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[23] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg, Russia
[24] Oak Ridge Natl Lab, Oak Ridge, TN USA
[25] Univ Salerno, Fisciano, Italy
[26] Warsaw Univ Technol, Warsaw, Poland
[27] ENEA, Ctr Ric Frascati, Frascati, Italy
[28] Inst Nucl Phys PAN, Krakow, Poland
[29] Univ Szczecin, Szczecin, Poland
[30] Univ Milano Bicocca, Milan, Italy
[31] Auburn Univ, Auburn, AL 36849 USA
[32] Brandenburg Univ Technol Cottbus Senftenberg, Senftenberg, Germany
[33] Natl Inst Fus Sci, Toki, Gifu, Japan
[34] Univ Carlos III Madrid, Madrid, Spain
[35] CEA Cadarache, St Paul Les Durance, France
[36] Culham Ctr Fus Energy, Abingdon, Oxon, England
[37] Budker Inst Nucl Phys, Novosibirsk, Russia
[38] Univ Stuttgart, Inst Grenzflachenverfahrenstech & Plasmatechnol, Stuttgart, Germany
[39] Fraunhofer Inst Schicht & Oberflachentech IST, Braunschweig, Germany
[40] Austrian Acad Sci, Vienna, Austria
[41] Inst Nucl Res, Kiev, Ukraine
[42] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia
[43] Univ Opole, Opole, Poland
[44] Aalto Univ, Espoo, Finland
[45] Phys Tech Bundesanstalt, Braunschweig, Germany
[46] Kyoto Univ, Kyoto, Japan
[47] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China
[48] Czech Acad Sci, Inst Plasma Phys, Prague, Czech Republic
[49] Inst Fis Plasma Piero Caldirola, Milan, Italy
[50] Fraunhofer Inst Werkzeugmaschinen & Umformtech IW, Chemnitz, Germany
关键词
ENERGY CONFINEMENT; TRANSPORT-COEFFICIENTS; ENGINEERING DESIGN; PLASMA-CONFINEMENT; BOOTSTRAP-CURRENT; DIFFUSION; FIELD; W7-X;
D O I
10.1038/s41567-018-0141-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (tau(E) > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.
引用
收藏
页码:855 / +
页数:8
相关论文
共 50 条
[1]  
[Anonymous], 1979, RVPP
[2]   PHYSICS AND ENGINEERING DESIGN FOR WENDELSTEIN-VII-X [J].
BEIDLER, C ;
GRIEGER, G ;
HERRNEGGER, F ;
HARMEYER, E ;
KISSLINGER, J ;
LOTZ, W ;
MAASSBERG, H ;
MERKEL, P ;
NUHRENBERG, J ;
RAU, F ;
SAPPER, J ;
SARDEI, F ;
SCARDOVELLI, R ;
SCHLUTER, A ;
WOBIG, H .
FUSION TECHNOLOGY, 1990, 17 (01) :148-168
[3]   Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) [J].
Beidler, C. D. ;
Allmaier, K. ;
Isaev, M. Yu ;
Kasilov, S. V. ;
Kernbichler, W. ;
Leitold, G. O. ;
Maassberg, H. ;
Mikkelsen, D. R. ;
Murakami, S. ;
Schmidt, M. ;
Spong, D. A. ;
Tribaldos, V. ;
Wakasa, A. .
NUCLEAR FUSION, 2011, 51 (07)
[4]   RIPPLE TRANSPORT IN HELICAL-AXIS ADVANCED STELLARATORS - A COMPARISON WITH CLASSICAL STELLARATOR TORSATRONS [J].
BEIDLER, CD ;
HITCHON, WNG .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (02) :317-353
[5]   DIFFUSION DRIVEN PLASMA CURRENTS AND BOOTSTRAP TOKAMAK [J].
BICKERTON, RJ ;
CONNOR, JW ;
TAYLOR, JB .
NATURE-PHYSICAL SCIENCE, 1971, 229 (04) :110-+
[6]   Final integration, commissioning and start of the Wendelstein 7-X stellarator operation [J].
Bosch, H. -S. ;
Brakel, R. ;
Braeuer, T. ;
Bykov, V. ;
van Eeten, P. ;
Feist, J. -H. ;
Fuellenbach, F. ;
Gasparotto, M. ;
Grote, H. ;
Klinger, T. ;
Laqua, H. ;
Nagel, M. ;
Naujoks, D. ;
Otte, M. ;
Risse, K. ;
Rummel, T. ;
Schacht, J. ;
Spring, A. ;
Pedersen, T. Sunn ;
Vilbrandt, R. ;
Wegener, L. ;
Werner, A. ;
Wolf, R. C. ;
Baldzuhn, J. ;
Biedermann, C. ;
Braune, H. ;
Burhenn, R. ;
Hirsch, M. ;
Hoefl, U. ;
Knauer, J. ;
Kornejew, P. ;
Marsen, S. ;
Stange, T. ;
Mora, H. Trimino .
NUCLEAR FUSION, 2017, 57 (11)
[7]   Effect of error field correction coils on W7-X limiter loads [J].
Bozhenkov, S. A. ;
Jakubowski, M. W. ;
Niemann, H. ;
Lazerson, S. A. ;
Wurden, G. A. ;
Biedermann, C. ;
Kocsis, G. ;
Koenig, R. ;
Pisano, F. ;
Stephey, L. ;
Szepesi, T. ;
Wenzel, U. ;
Pedersen, T. S. ;
Wolf, R. C. .
NUCLEAR FUSION, 2017, 57 (12)
[8]   Service oriented architecture for scientific analysis at W7-X. An example of a field line tracer [J].
Bozhenkov, S. A. ;
Geiger, J. ;
Grahl, M. ;
Kisslinger, J. ;
Werner, A. ;
Wolf, R. C. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (11) :2997-3006
[9]   Physical model assessment of the energy confinement time scaling in stellarators [J].
Dinklage, A. ;
Maassberg, H. ;
Preuss, R. ;
Irkin, Yu. A. ;
Yamada, H. ;
Ascasibar, E. ;
Beidler, C. D. ;
Funaba, H. ;
Harris, J. H. ;
Kus, A. ;
Murakami, S. ;
Okamura, S. ;
Sano, F. ;
Stroth, U. ;
Suzuki, Y. ;
Talmadge, J. ;
Tribaldos, V. ;
Watanabe, K. Y. ;
Werner, A. ;
Weller, A. ;
Yokoyama, M. .
NUCLEAR FUSION, 2007, 47 (09) :1265-1273
[10]   Chapter 2: Plasma confinement and transport [J].
Department of Electrical Engineering, PSTI, University of California, Los Angeles, CA, United States ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nucl Fusion, 2007, 6 (S18-S127) :S18-S127