Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems

被引:42
|
作者
Gafiychuk, V. V.
Datsko, B. Y.
机构
[1] CUNY, Coll Technol, Dept Phys, Brooklyn, NY 11201 USA
[2] Natl Acad Sci Ukraine, Inst Appl Problems Mech & Math, UA-79053 Lvov, Ukraine
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 05期
关键词
D O I
10.1103/PhysRevE.75.055201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The linear stage of stability is studied for a two-component fractional reaction-diffusion system. It is shown that, with a certain value of the fractional derivative index, a different type of instability occurs. The linear stability analysis shows that the system becomes unstable toward perturbations of finite wave number. As a result, inhomogeneous oscillations with this wave number become unstable and lead to nonlinear oscillations which result in spatial oscillatory structure formation. A computer simulation of a Bonhoeffer-van der Pol type of reaction-diffusion system with fractional time derivatives is performed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Asymptotic stability conditions for autonomous time-fractional reaction-diffusion systems
    Douaifia, Redouane
    AbdelmaleK, Salem
    Bendoukha, Samir
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 80
  • [2] Inhomogeneous oscillatory structures in fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    PHYSICS LETTERS A, 2008, 372 (05) : 619 - 622
  • [3] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [4] Stability analysis of semi-analytical technique for time-fractional Cauchy reaction-diffusion equations
    Ullah, Saif
    Ali, Rahat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2025, 80 (03): : 199 - 214
  • [5] NUMERICAL APPROACH TO THE TIME-FRACTIONAL REACTION-DIFFUSION EQUATION
    Qiu, Yu-Yang
    THERMAL SCIENCE, 2019, 23 (04): : 2245 - 2251
  • [6] Comparison of Numerical Solutions of Time-Fractional Reaction-Diffusion Equations
    Kurulay, Muhammet
    Bayram, Mustafa
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 49 - 59
  • [7] The Second Critical Exponent for a Time-Fractional Reaction-Diffusion Equation
    Igarashi, Takefumi
    MATHEMATICS, 2024, 12 (18)
  • [8] A class of time-fractional reaction-diffusion equation with nonlocal boundary condition
    Zhou, Yong
    Shangerganesh, L.
    Manimaran, J.
    Debbouche, Amar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2987 - 2999
  • [9] On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations
    Jannelli, Alessandra
    Speciale, Maria Paola
    AIMS MATHEMATICS, 2021, 6 (08): : 9109 - 9125
  • [10] An inverse source problem of a semilinear time-fractional reaction-diffusion equation
    Faizi, R.
    Atmania, R.
    APPLICABLE ANALYSIS, 2023, 102 (11) : 2939 - 2959