Validation of a New Root-Zone Soil Moisture Product: Soil MERGE

被引:30
作者
Tobin, Kenneth J. [1 ]
Crow, Wade T. [2 ]
Dong, Jianzhi [2 ]
Bennett, Marvin E. [1 ]
机构
[1] Texas A&M Int Univ, Ctr Earth & Environm Studies, Laredo, TX 78041 USA
[2] USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
基金
美国国家科学基金会;
关键词
European Space Agency Climate Change Initiative (ESA-CCI); exponential filter; North American land data assimilation system (NLDAS) Noah; root-zone soil moisture (RZSM); soil MERGE (SMERGE); AGRICULTURAL DROUGHT; EXPONENTIAL FILTER; ERS SCATTEROMETER; TREND ANALYSIS; SURFACE; SATELLITE; MODEL; ASSIMILATION; CLIMATE; CHINA;
D O I
10.1109/JSTARS.2019.2930946
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Soil MERGE (SMERGE) is a 0.125 degrees, root-zone soil moisture (RZSM) product (0-40-cm depth) generated within the contiguous United States (CONUS). This product is developed by merging RZSM output from the North American land data assimilation system (NLDAS) with surface satellite retrievals from the European Space Agency Climate Change Initiative. SMERGE, at present, spans four decades (1979-2016). Here, we introduce the SMERGE approach and describe the validation of SMERGE RZSM estimates using three geophysical observations: 1) comparison with sparse in situ soil moisture data acquired from the soil climate analysis network (SCAN) and the U.S. Climate Reference Network (USCRN); 2) ranked correlation analysis against normalized difference vegetation index (NDVI) datasets; and 3) ranked correlation analysis of antecedent RZSM with storm-event streamflow across a range of precipitation intensities (5-45 mm/day). Relative to in situ SCAN and USCRN observations, SMERGE has an average daily correlation of 0.7-0.8 and unbiased root-mean square error close to 0.04 m(3)/m(3)-a level that is commonly applied as a validation target for large-scale soil moisture datasets. NDVI benchmarking allows us to indirectly evaluate SMERGE across CONUS and reveals it can predict near-term vegetation health anomalies with skill comparable to that of RZSM products generated by more complex data assimilation methods. In addition, streamflow-based evaluation results demonstrate that SMERGE antecedent RZSM can be used as a reliable predicator of storm-event runoff efficiency for rainfall events >25 mm/day.
引用
收藏
页码:3351 / 3365
页数:15
相关论文
共 59 条
[1]   From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations [J].
Albergel, C. ;
Ruediger, C. ;
Pellarin, T. ;
Calvet, J. -C. ;
Fritz, N. ;
Froissard, F. ;
Suquia, D. ;
Petitpa, A. ;
Piguet, B. ;
Martin, E. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2008, 12 (06) :1323-1337
[2]   Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing [J].
Albergel, C. ;
Dorigo, W. ;
Reichle, R. H. ;
Balsamo, G. ;
de Rosnay, P. ;
Munoz-Sabater, J. ;
Isaksen, L. ;
de Jeu, R. ;
Wagner, W. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (04) :1259-1277
[3]   Validation of the ESA CCI soil moisture product in China [J].
An, Ru ;
Zhang, Ling ;
Wang, Zhe ;
Quaye-Ballard, Jonathan Arthur ;
You, Jiajun ;
Shen, Xiaoji ;
Gao, Wei ;
Huang, Lijun ;
Zhao, Yinghui ;
Ke, Zunyou .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 48 :28-36
[4]   A comparison between Terra MODIS and NOAA AVHRR NDVI satellite image composites for the monitoring of natural grassland conditions in Alberta, Canada [J].
Bedard, F. ;
Crump, S. ;
Gaudreau, J. .
CANADIAN JOURNAL OF REMOTE SENSING, 2006, 32 (01) :44-50
[5]   Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture [J].
Bolten, J. D. ;
Crow, W. T. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[6]   Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring [J].
Bolten, John D. ;
Crow, Wade T. ;
Zhan, Xiwu ;
Jackson, Thomas J. ;
Reynolds, Curt A. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2010, 3 (01) :57-66
[7]   Antecedent wetness conditions based on ERS scatterometer data [J].
Brocca, L. ;
Melone, F. ;
Moramarco, T. ;
Morbidelli, R. .
JOURNAL OF HYDROLOGY, 2009, 364 (1-2) :73-87
[8]  
Chen FC, 2016, IEEE J-STARS, P1, DOI [10.1109/TMTT.2016.2613056, DOI 10.1109/JSTARS.2016.2569998]
[9]   Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project [J].
Cosgrove, BA ;
Lohmann, D ;
Mitchell, KE ;
Houser, PR ;
Wood, EF ;
Schaake, JC ;
Robock, A ;
Marshall, C ;
Sheffield, J ;
Duan, QY ;
Luo, LF ;
Higgins, RW ;
Pinker, RT ;
Tarpley, JD ;
Meng, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[10]   Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models [J].
Crow, W. T. ;
Chen, F. ;
Reichle, R. H. ;
Xia, Y. ;
Liu, Q. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (10) :4869-4878