Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique

被引:73
作者
Hu, Lei [1 ,2 ]
Gao, Yi-Tian [1 ,2 ]
Jia, Ting-Ting [1 ,2 ]
Deng, Gao-Fu [1 ,2 ]
Li, Liu-Qing [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 02期
基金
中国国家自然科学基金;
关键词
Irrotational incompressible fluid; (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation; Hybrid solutions; Modified Pfaffian technique; SYMBOLIC COMPUTATION; SOLITON-SOLUTIONS; LUMP SOLUTIONS; DROMION; SYSTEM;
D O I
10.1007/s00033-021-01482-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fluids, as a phase of matter including liquids, gases and plasmas, are seen to be common in nature, the study of which helps the design in the related industries. In this paper, we optimize the Pfaffian technique and investigated the Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid. Higher-order hybrid solutions consisting of the L lumps, M breathers and N solitons are constructed with L, M and N being positive integers. Relative extrema of the breather and lump are presented, respectively. Breather is found to be localized along the curve a(1)x+b(1)phi(y)+ omega(1)t + xi = 0 and periodic along the curve alpha(1)x + beta(1)phi(y) + gamma(1)t + theta(1) = 0. Under the lump existence condition, higher-order rogue wave solutions do not exist. Hybrid solutions composed of breathers, lumps and solitons are illustrated graphically. It can be found that when certain parameters are chosen, the breather, lump and soliton included in the hybrid solutions possess the same properties as those of the breather and lump solutions.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[2]   Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrodinger equation for the attosecond pulses in the optical fiber communication [J].
Chen, Su-Su ;
Tian, Bo ;
Chai, Jun ;
Wu, Xiao-Yu ;
Du, Zhong .
WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (03) :389-402
[3]   Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrodinger Equations in Nonlinear Optics [J].
Chen, Su-Su ;
Tian, Bo ;
Sun, Yan ;
Zhang, Chen-Rong .
ANNALEN DER PHYSIK, 2019, 531 (08)
[4]   Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25)
[5]   Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
MODERN PHYSICS LETTERS B, 2020, 34 (26)
[6]   Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti-Leon-Manna-Pempinelli Equations [J].
Darvishi, M. T. ;
Najafi, M. ;
Kavitha, L. ;
Venkatesh, M. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (06) :785-794
[7]   Classical and SUSY solutions of the Boiti-Leon-Manna-Pempinelli equation [J].
Delisle, Laurent ;
Mosaddeghi, Masoud .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (11)
[8]   Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy [J].
Dou, Shuo ;
Tao, Li ;
Wang, Ruilun ;
El Hankari, Samir ;
Chen, Ru ;
Wang, Shuangyin .
ADVANCED MATERIALS, 2018, 30 (21)
[9]   Diagnostics for plasma-based electron accelerators [J].
Downer, M. C. ;
Zgadzaj, R. ;
Debus, A. ;
Schramm, U. ;
Kaluza, M. C. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (03)
[10]   Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2020, 134