Local and 2-local automorphisms of simple generalized Witt algebras

被引:5
作者
Chen, Yang [1 ]
Zhao, Kaiming [2 ,3 ]
Zhao, Yueqiang [4 ]
机构
[1] Hebei Normal Univ, Math Postdoctoral Res Ctr, CN-050016 Shijiazhuang, Hebei, Peoples R China
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[3] Hebei Normal Univ, Sch Math Sci, CN-050016 Shijiazhuang, Hebei, Peoples R China
[4] Xinyang Normal Univ, Sch Math & Stat, CN-464000 Xinyang, Henan, Peoples R China
来源
ARKIV FOR MATEMATIK | 2021年 / 59卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Lie algebra; generalized Witt algebra; automorphism; local automorphism; 2-local automorphism; MODULES;
D O I
10.4310/ARKIV.2021.v59.n1.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that every invertible 2-local or local automorphism of a simple generalized Witt algebra over any field of characteristic 0 is an automorphism. Furthermore, every 2-local or local automorphism of Witt algebras Wn is an automorphism for all n.N. But some simple generalized Witt algebras indeed have 2-local (and local) automorphisms that are not automorphisms.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 16 条
[1]   2-Local derivations on generalized Witt algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen ;
Yusupov, Baxtiyor .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16) :3130-3140
[2]   2-Local automorphisms on finite-dimensional Lie algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 507 :121-131
[3]   Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus [J].
Billig, Yuly ;
Molev, Alexander ;
Zhang, Ruibin .
ADVANCES IN MATHEMATICS, 2008, 218 (06) :1972-2004
[4]   Classification of irreducible representations of Lie algebra of vector fields on a torus [J].
Billig, Yuly ;
Futorny, Vyacheslav .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 :199-216
[5]  
Cartan E., 1909, ANN SCI ECOLE NORM S, V26, P93, DOI 10.24033/asens.603
[6]   Local derivations on Witt algebras [J].
Chen, Yang ;
Zhao, Kaiming ;
Zhao, Yueqiang .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06) :1159-1172
[7]   2-Local automorphisms of finite-dimensional simple Lie algebras [J].
Chen, Zhengxin ;
Wang, Dengyin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 :335-344
[8]   Local automorphisms of finite dimensional simple Lie algebras [J].
Costantini, Mauro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 :123-134
[9]   Local automorphisms [J].
Crist, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1409-1414
[10]  
Dokovic DZ, 1998, T AM MATH SOC, V350, P643