Global Stability in The Delayed Leslie-Gower Predator-Prey System

被引:0
作者
Wang, Wenlong [1 ]
Mang, Shufang [1 ]
Zhang, Chunrui [1 ]
机构
[1] NE Forest Univ, Dept Math, Harbin 150040, Peoples R China
来源
PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II | 2010年
关键词
time delay; boundedness; permanent; global stability; liyapunov functional; MODEL;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the delayed Leslie-Gower predator-prey is investigated. By constructing a Liyapunov function, we obtain a sufficient condition for global stability of the positive equilibrium. We also present some related qualitative results for this system.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 9 条
[1]   Global analyses in some delayed ratio-dependent predator-prey systems [J].
Beretta, E ;
Kuang, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :381-408
[2]  
Cushing J. M., 2013, Integrodifferential Equations and Delay Models in Population Dynamics, DOI DOI 10.1007/978-3-642-93073-7
[4]  
Gopalsamy K., 2013, STABILITY OSCILLATIO, V74
[5]  
Kuang Y., 1993, Delay Differential Equations with Applications in Population Dynamics
[6]   THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF INTERACTION BETWEEN 2 SPECIES [J].
LESLIE, PH ;
GOWER, JC .
BIOMETRIKA, 1960, 47 (3-4) :219-234
[7]  
MAY RM, 1973, ECOLOGY, V4, P315
[8]   Crisis-limited chaotic dynamics in ecological systems [J].
Upadhyay, RK ;
Rai, V .
CHAOS SOLITONS & FRACTALS, 2001, 12 (02) :205-218
[9]   Persistence and global stability in a delayed predator-prey system with Michaelis-Menten type functional response [J].
Xu, R ;
Chaplain, MAJ .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 130 (2-3) :441-455